Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement.

(Incorporated in Hong Kong with limited liability)

(STOCK CODE: 1208)

FIRST QUARTER PRODUCTION REPORT FOR THE THREE MONTHS ENDED 31 MARCH 2020

This announcement is made pursuant to Rule 13.09 of the Rules Governing the Listing of Securities of The Stock Exchange of Hong Kong Limited (Listing Rules) and the Inside Information Provisions (as defined in the Listing Rules) under Part XIVA of the Securities and Futures Ordinance (Chapter 571 of the Laws of Hong Kong).

The board of directors (Board) of MMG Limited (Company or MMG) is pleased to provide the First Quarter Production Report for the three months ended 31 March 2020.

The report is annexed to this announcement.

By order of the Board

MMG Limited

GAO Xiaoyu

CEO and Executive Director

Hong Kong, 23 April 2020

As at the date of this announcement, the Board comprises eight directors, of which one is an executive director, namely Mr Gao Xiaoyu; four are non-executive directors, namely Mr Guo Wenqing (Chairman), Mr Jiao Jian, Mr Zhang Shuqiang and Mr Xu Jiqing; and three are independent non-executive directors, namely Dr Peter William Cassidy, Mr Leung Cheuk Yan and Mr Chan Ka Keung, Peter.

2020 FIRST QUARTER PRODUCTION REPORT

FOR THE THREE MONTHS ENDED 31 MARCH 2020									
	1Q20	1Q20 VS 1Q19	1Q20 VS 4Q19	YTD20	YTD20 VS YTD19				
Copper cathode (tonnes)	1020	V3 IQI3	V3 4Q13	11020	V3 11D13				
Kinsevere	18,207	45%	-11%	18,207	45%				
Total	18,207	45%	-11%	18,207	45%				
Copper (contained metal in concentrate, tonnes)									
Las Bambas	73,319	-28%	-26%	73,319	-28%				
Rosebery	385	2%	-11%	385	2%				
Total	73,704	-28%	-26%	73,704	-28%				
Zinc (contained metal in concentrate, tonnes)									
Dugald River	35,505	-8%	-26%	35,505	-8%				
Rosebery	17,452	-6%	-23%	17,452	-6%				
Total	52,957	-7%	-25%	52,957	-7%				
Lead (contained metal in concentrate, tonnes)									
Dugald River	4,277	-16%	-37%	4,277	-16%				
Rosebery	5,666	-4%	-17%	5,666	-4%				
Total	9,943	-9%	-27%	9,943	-9%				
Molybdenum (contained metal in concentrate, tonnes)									
Las Bambas	124	-76%	-48%	124	-76%				
Total	124	-76%	-48%	124	-76%				

KEY POINTS

- Total recordable injury frequency (TRIF) of 1.59 per million hours worked for the first quarter in 2020.
- Total copper production of 91,911 tonnes was 24% below the prior period, largely due to social and operating disruptions at Las Bambas.
- At Las Bambas, production levels were impacted in January and February as a result of repairs to the overland ore conveyor, together with blockades along Peru's southern road corridor which temporarily restricted both inbound and outbound logistics between 27 January and 8 February.
- Further disruptions to mining and production activity at Las Bambas have resulted from a nation-wide State of Emergency that was first declared on 15 March, in response to the COVID-19 outbreak. As a result of the State of Emergency and other health restrictions, the transport of concentrates has been suspended, and the movement of people and critical supplies is significantly restricted.

- Kinsevere copper cathode production of 18,207 tonnes was in line with plan for the first quarter and 45% above the comparative period in 2019, reflecting a shift back to mining at the Central pit.
- Zinc production of 52,957 tonnes was largely in line with expectations.
- At Rosebery, zinc production of 17,452 tonnes was 6% below the prior-year comparative period, reflecting anticipated lower ore grades, together with lower milling volumes as work continues to enhance mine flexibility in response to seismic instability at depth.
- At Dugald River, zinc production of 35,505 tonnes was achieved, with lower feed grades and temporary recovery challenges impacting the result.
- MMG continues to pro-actively respond to the COVID-19 pandemic, working closely with national authorities in relevant jurisdictions to protect the health and safety of its employees, host communities and other stakeholders. To date, no COVID-19 cases have been identified at any MMG operation.
- The year-to-date impacts of community disruption and COVID-19 on production, together with ongoing uncertainty regarding the continued impact of virus-related constraints, has resulted in the withdrawal of guidance for Las Bambas.
- Noting the potential for further impacts and ongoing uncertainty associated with the COVID-19 outbreak, the Company at this stage maintains its full year production and C1 cost guidance for Kinsevere, Dugald River and Rosebery.
- Positive results continue to be received in relation to drilling programs around existing operating hubs. Drilling over the first quarter of 2020 at Las Bambas extends and confirms previously reported high-grade intercepts (>1%) at the Chalcobamba Southwest Zone, and significant copper and cobalt assay results were received during the quarter from drilling programs at Sokoroshe II and Nambulwa, in the Democratic Republic of Congo.

COVID-19

MMG continues to pro-actively respond to the COVID-19 outbreak, working closely with national authorities in relevant jurisdictions to protect the health and safety of its employees, host communities and other stakeholders. To date, no COVID-19 cases have been identified at any MMG operation.

The Company has implemented business continuity plans at both a corporate and regional level to assist local communities and authorities in limiting the spread of COVID-19, and to help mitigate operational risks. These plans are managed by crisis management teams that meet on a daily basis, with oversight from MMG's executive team. Where possible, flexible and remote working arrangements have been implemented to limit face-to-face interactions. Increased screening by site medical teams, together with adjustments to site rosters and isolation and quarantine procedures for employees arriving at remote camp-based sites have also been introduced. These measures are reinforced by regular employee communications that seek to promote social distancing, and best-practice health and hygiene management.

In addition, the Company has implemented a series of initiatives to support COVID-19 response and awareness initiatives in its host communities. This includes additional funding and support for local and regional health directorates, sourcing of critical PPE, the communication of national public health advice in both official and indigenous languages through community radio stations and in flyers and posters, and other direct support for local communities where a need is identified.

On 15 March, the Government of Peru declared a State of National Emergency and other measures to restrict the spread of COVID-19. This State of Emergency remains in place, extended by the Government of Peru on several occasions. As a result of this situation, Las Bambas has been operating, consistent with national guidelines and Company health protections, at reduced levels of mining and production. The transport of concentrates has been suspended, and the movement of people and critical supplies is significantly restricted.

With the previously mentioned protections in place, operations have largely continued as normal in Australia and the Democratic Republic of Congo (DRC), with relatively limited impacts from the COVID-19 outbreak.

MMG continues to prudently manage its liquidity position, with more than US\$510.0 million in cash and undrawn liquidity facilities available to the Las Bambas Joint Venture and a further US\$310.0 million available across its other subsidiaries as at 31 March. The Company maintains the strong support of its majority shareholder and funding partners and is proactively pursuing measures to further enhance its liquidity position, reduce discretionary expenditure and review near-term capital requirements.

COMMODITY PRICES, MARKETING AND SALES

COMMODITY PRICES, MARKETING AND SALES								
	Q	UARTER-AVERAG	SE .	QUARTER CLOSE				
	1Q20	4Q19	1Q19	1Q20	4Q19	1Q19		
Metal Price								
Copper (US\$/lb)	2.56	2.83	2.82	2.18	2.79	2.94		
Gold (US\$/oz)	1,583	1,548	1,304	1,607	1,523	1,293		
Lead (US\$/lb)	0.84	0.88	0.92	0.78	0.87	0.92		
Molybdenum (US\$/lb)	9.64	9.14	11.79	8.43	9.20	12.13		
Silver (US\$/oz)	16.90	18.29	15.57	13.93	18.05	15.10		
Zinc (US\$/lb)	0.97	1.04	1.23	0.85	1.04	1.36		

Sources: zinc, lead and copper: LME cash settlement price; Molybdenum: Platts; gold and silver: LBMA.

Base metal prices fell substantially over the first quarter of 2020, as the global economic impact of the COVID-19 pandemic became increasingly apparent. Copper and zinc prices fell by 22% and 19% respectively over the period. Lead prices fared slightly better, falling by 10%, partly assisted by demand factors associated with lead-acid battery replacement requirements for vehicles.

After initially rallying in January and February, gold prices fell sharply during March, together with equity markets, as investors sought to liquidate positions following the formal declaration of a global pandemic by the World Health Organisation. Gold prices recovered by the close of the quarter, ending 5% higher than at the start of the year. Silver prices closed 22% down for the quarter, due to significant declines in industrial demand.

Copper concentrate market sentiment shifted during the period. COVID-19 related restrictions in the first part of the quarter constrained Chinese smelter production, leading to initial concerns of potential concentrate oversupply. However, the market tightened during March, as China smelting activity recovered and concentrate supply from South America was interrupted by reduced output from key mines. Spot concentrate terms started the year trading below annual benchmark contract levels, before steadily moving higher in February, reflecting the direct COVID-19 impacts on Chinese smelters. They have now returned to trade below annual terms, as smelters seek secure stable concentrate feed. Notwithstanding the changes in market sentiment during the quarter, demand for copper concentrate at primary smelters is still expected to exceed growth in mine supply during 2020.

MMG shipments from Las Bambas during the quarter were lower than planned due to community-related logistics interruptions in January and early February. Following the declaration by the Government of Peru of a State of a National Emergency and other measures to contain the spread of COVID-19, concentrate logistics have been adversely impacted and are suspended, with concentrate stocks at Matarani Port exhausted. As a result, Force Majeure has been declared on Las Bambas copper and molybdenum concentrate sales agreements. For our customers, all cargoes shipped from Las Bambas to overseas ports during the quarter have been discharged and received at destination ports, without any major interruptions.

Spot treatment charges for zinc increased during 2019 and early 2020, based on expectations of additional global zinc mine capacity coming into production. Consistent with this trend, it was reported during March that Korea Zinc and Teck Resources settled 2020 headline zinc concentrate treatment charges, which are used as a reference in many annual contracts, at \$299.75/dmt. This marked an increase of \$54.75/dmt from the 2019 zinc headline treatment charge of \$245.00/dmt, Subsequently, treatment charges in the spot market have started to reduce significantly in

favour of miners, as mine production has fallen due to COVID-19 impacts, while smelter demand remains steady. Lead concentrate terms also improved during the latter part of the quarter. Demand for MMG's qualities of zinc and lead concentrates remains robust, with concentrate shipments from Dugald River and Rosebery mines proceeding smoothly during the quarter.

PROVISIONAL PRICING

The following table provides a summary of the metal that was sold but which remains provisionally priced at the end of the first quarter 2020 and the month that final average pricing is expected to occur at the time of provisional invoicing.

OPEN PRICING AT 1 APRIL 2020										
	APR-20	MAY-20	JUN-20	JUL-20	TOTAL					
Copper (tonnes cathode and copper contained in concentrate)	49,527	3,709	3,606		56,842					
Gold (ounces)	7,953	486	2,193		10,632					
Lead (tonnes)	1,607		2,875		4,482					
Molybdenum (pounds)			177,536	204,778	382,314					
Silver (ounces)	452,978	44,052	296,415		793,445					
Zinc (tonnes)	17,560	3,880	8,464		29,904					

OPERATIONS

LAS BAMBAS

		LAS BAMBA	ıs		
	1Q20	1Q20 VS 1Q19	1Q20 VS 4Q19	YTD20	YTD20 VS YTD19
Copper (tonnes)	73,319	-28%	-26%	73,319	-28%
Molybdenum (tonnes)	124	-76%	-48%	124	-76%

First quarter performance

Las Bambas produced 73,319 tonnes of copper in copper concentrate during the first quarter. This represented a decrease of 26% from the prior period and reflects reduced mining and milling volumes, which fell by 12% and 23% respectively.

Mining and milling activity was adversely impacted during the period by repairs to the overland ore conveyor and community related logistics disruptions in January and February. As of mid-March, indirect impacts of the COVID-19 pandemic also adversely impacted on site activity levels. These impacts were partially offset by higher ore grades, which were above plan for the quarter.

Molybdenum production for the first quarter was also lower than the prior period. This was primarily a result of debottlenecking work on the molybdenum plant, which commenced in 2019. The molybdenum plant is currently going through a commissioning and ramp-up process. It is expected that this work will result in a material uplift in molybdenum production once operations return to normal.

On 27 January, a series of community blockades commenced along Peru's southern road corridor. These actions caused disruption to Las Bambas' outbound and inbound logistics, as well as the operations of several other mining companies that use the impacted public roads. The delivery of additional mine fleet was also delayed by the blockade. During this time, repairs were also required on Las Bambas' overland conveyor, which transports crushed ore to the processing plant. This temporarily limited the steady supply of ore to the mill.

On 8 February, the Government of Peru declared a 30-day State of Emergency along sections of the southern road corridor. This resulted in the cessation of community blockades and facilitated the gradual resumption of normal operations and logistics activity. This State of Emergency was subsequently renewed for a further 30-day period on 7

March. The Company has continued to pursue constructive dialogue with communities along the road and the National Government regarding potential alternative solutions to the existing transportation of concentrate.

On 15 March, the Government of Peru declared a State of National Emergency and also announced other measures to restrict the spread of COVID-19. As a result, normal operating activity at Las Bambas was again impacted, with limits placed on workforce availability and both inbound and outbound logistics. Although mining and processing activity at site has continued, the level of activity and compliance to original mine plans has been progressively impacted. The transport of concentrate has also been significantly limited and is currently suspended. Although initially only in place for a period of 14-days, further declarations have been made by the Government of Peru that will now see restrictions remain in place until at least Sunday, 26 April.

As disclosed in the 2019 Fourth Quarter Production Report, approximately 50,000 tonnes of copper metal was stockpiled at the Las Bambas mine site as at 31 December 2019. This stock has been progressively drawn down over the course of 2020, despite significant logistics challenges during the quarter. Balances fell below 40,000 tonnes by the end of February, however COVID-19 related impacts have resulted in a gradual increase to approximately 45,000 tonnes, as at 31 March. It is intended that this stock will be transported to Matarani Port at the earliest possible opportunity.

Revised outlook

Due to the inherent uncertainty associated with COVID-19 and its impacts on Las Bambas operations, on 13 April MMG withdrew its 2020 guidance for Las Bambas. The Company is working on a range of scenarios for recovery once restrictions have lifted and will provide an update to the market when there is greater certainty regarding the outlook and timing for a return to normal operations. This will include an update on any impacts to the development and permitting timeline for the Chalcobamba pit.

Despite the effects of COVID-19, the Company continues to expect that Las Bambas will deliver around two million tonnes of copper production in the five-year period from 2021 to 2025.

Beyond 2025, the Company continues to advance a series of development programs to maintain a strong production profile at Las Bambas. Positive drilling results as detailed in the Geoscience and Discovery section below continue to support the Company's confidence in the potential for an expansion of the existing Chalcobamba pit design and also reflect the highly prospective nature of the Las Bambas tenements more generally.

KINSEVERE

		KINSEVERE			
	1Q20	1Q20 VS 1Q19	1Q20 VS 4Q19	YTD20	YTD20 VS YTD19
Copper Cathode (tonnes)	18,207	45%	-11%	18,207	45%

First quarter performance

Kinsevere produced 18,207 tonnes of copper cathode in the first quarter. This represented a 45% improvement against the comparative prior year period and follows the return to mining at the Central pit, with associated improvements in ore grade. Lower cathode production compared to the final quarter of 2019 was largely attributable to reduced mill throughput. This was a result of unfavourable ore characteristics, which also impacted recoveries through the accumulation of coarse particles in leach tanks. The effect of this was partially offset by above plan feed grades. Adjustments are being made to the processing circuit to limit impacts in the future.

Mining volumes were below the final quarter of 2019, largely due to the impact of the wet season. This has triggered changes to the mine sequencing plan that will see access to higher grade areas deferred until later in the year, with dilution levels more manageable in the dry season. Temporary local COVID-19 related restrictions placed limits on people movements and also impacted on mining volumes during March. However, this did not directly impact processing activity given the availability of ore stockpiles at site.

2020 outlook

Noting the ongoing uncertainty associated with COVID-19, MMG at this stage maintains its existing 2020 guidance for Kinsevere, with production of between 68,000 and 75,000 tonnes of copper cathode and C1 costs of US\$1.80-1.95/lb.

The Company continues to investigate options to extend the life of Kinsevere with studies ongoing for the next phase of the Kinsevere project, including the addition of a sulphide ore and cobalt processing circuit alongside the existing oxide circuit. As previously advised, the Company expects to reach a decision on this project during the second half of 2020.

DUGALD RIVER

		DUGALD RIVER			
	1Q20	1Q20 VS 1Q19	1Q20 VS 4Q19	YTD20	YTD20 VS YTD19
Contained metal in concentrate					
Zinc (tonnes)	35,505	-8%	-26%	35,505	-8%
Lead (tonnes)	4,277	-16%	-37%	4,277	-16%

First quarter performance

Dugald River produced 35,505 tonnes of zinc in zinc concentrate and 4,277 tonnes of lead in lead concentrate during the first quarter of 2020. Mining and milling volumes of 462,570 and 443,378 tonnes respectively were both in line with plan and continue to demonstrate Dugald River's capacity to operate in excess of nameplate capacity on a sustained basis.

First quarter mining and milling volumes at Dugald River are typically below other periods due to wet weather. Ore mined during the first quarter of 2020 was significantly higher (18%) than the prior year comparative period, reflecting the extensive flooding at Dugald River in early 2019.

The depletion of pre-commissioning ore during the second half of 2019 resulted in low surface ore stocks at the beginning of 2020, limiting mill throughput for the period until a surplus was established toward the end of the quarter. Milling was also impacted by unplanned maintenance requirements, including wet weather related power disruptions. This, combined with lower ore grades and recoveries, resulted in metal production volumes that were below both the prior quarter and prior year comparative periods. Grade declines partially reflect mine sequencing, in addition to higher than anticipated dilution in the South mine. Lower recoveries were largely confined to the first half of the period, with enhanced grinding processes leading to improvements in March.

2020 outlook

After an aggressive and successful ramp up during 2019, work in 2020 will continue to focus on opening up new operating areas, to ensure a steady feed of ore to the mill. The optimisation of recoveries will be a major area of focus in the processing plant. This work will be key in ensuring Dugald River remains on track to deliver annual mine capacity of two million tonnes and targeted zinc equivalent production in excess of 200kt per annum, by 2022.

Noting the ongoing uncertainty associated with COVID-19, MMG at this stage maintains its existing 2020 guidance for Dugald River, with production of between 170,000 and 180,000 tonnes of zinc in zinc concentrate and C1 costs of US\$0.70-0.75/lb.

ROSEBERY

		ROSEBERY			
	1Q20	1Q20 VS 1Q19	1Q20 VS 4Q19	YTD20	YTD20 VS YTD19
Contained metal in concentrate					
Zinc (tonnes)	17,452	-6%	-23%	17,452	-6%
Lead (tonnes)	5,666	-4%	-17%	5,666	-4%
Copper (tonnes)	385	2%	-11%	385	2%

First quarter performance

Rosebery produced 17,452 tonnes of zinc in zinc concentrate during the first quarter, which together with lead and copper production was in line with expectations. The impacts of reduced throughput were partially offset by higher than anticipated milled ore grades during the period. Lower metal production compared to the fourth quarter of 2019 and the prior year comparative period is attributable to both lower mill throughput and declining ore grades.

Significant surface ore stockpiles at the beginning of 2020 allowed for high throughput in January. However, once these stockpiles were exhausted, the ongoing impact of two seismic events in 2019, as well as continued seismic activity and enhanced risk management practices, have limited access to existing mining fronts and constrained blasting activity. These limitations have temporarily reduced mine output, with a flow impact to milling volumes.

Although above expectations for the quarter, an overall decline in grades compared to prior periods is consistent with previous advice to the market and reflects the nature of the ore bodies in the deeper areas of the mine currently being accessed.

2020 outlook

In the near term, mine planning will continue to prioritise the development of lower seismic risk mining areas and enhance mine flexibility. The processing plant remains focused on optimising recoveries to offset anticipated declines in ore grades as the mine moves into deeper areas.

As previously advised, MMG remains committed to extending the operating life of the Rosebery mine. Resource extension drilling over the period has continued and studies into sustainable longer-term tailings management strategies are also being developed.

Noting the ongoing uncertainty associated with COVID-19, MMG at this stage maintains its existing 2020 guidance for Rosebery, with production of between 55,000 and 65,000 tonnes of zinc in zinc concentrate and C1 costs of US\$0.20-0.30/lb.

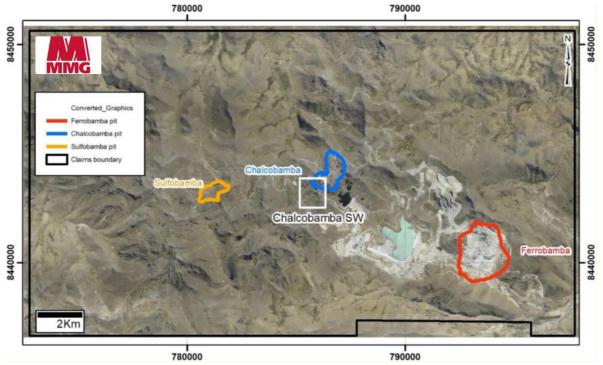
GEOSCIENCE AND DISCOVERY

Drilling activities were carried out at the Las Bambas operation in Peru, along with discovery and delineation of satellite copper oxide deposits within a roughly 50km radius (RAD50) of the Kinsevere mine. The focus of the Company's activities during the quarter are detailed below.

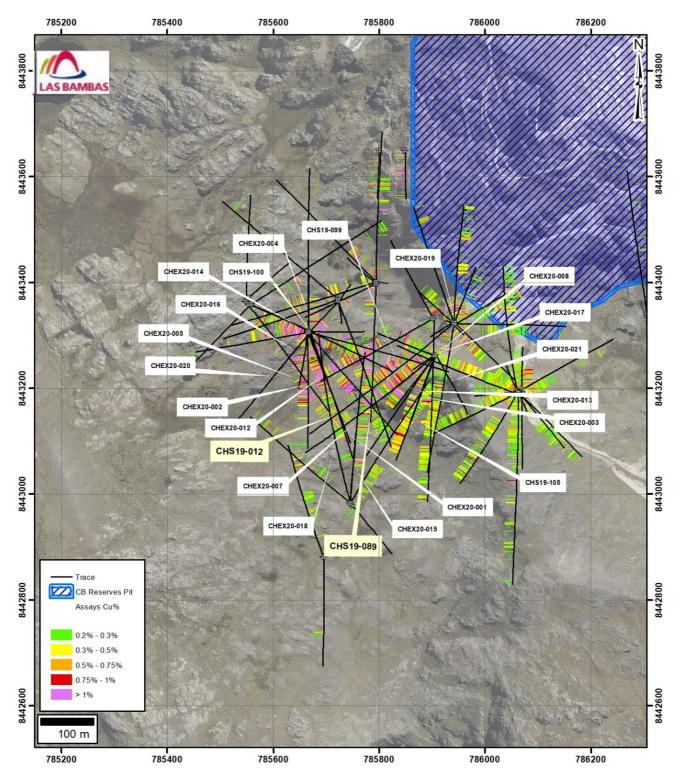
LAS BAMBAS

Drilling over the first quarter of 2020 at Las Bambas extends and confirms the near surface skarn and porphyry copper mineralisation at the Chalcobamba Southwest Zone (Figure 1).

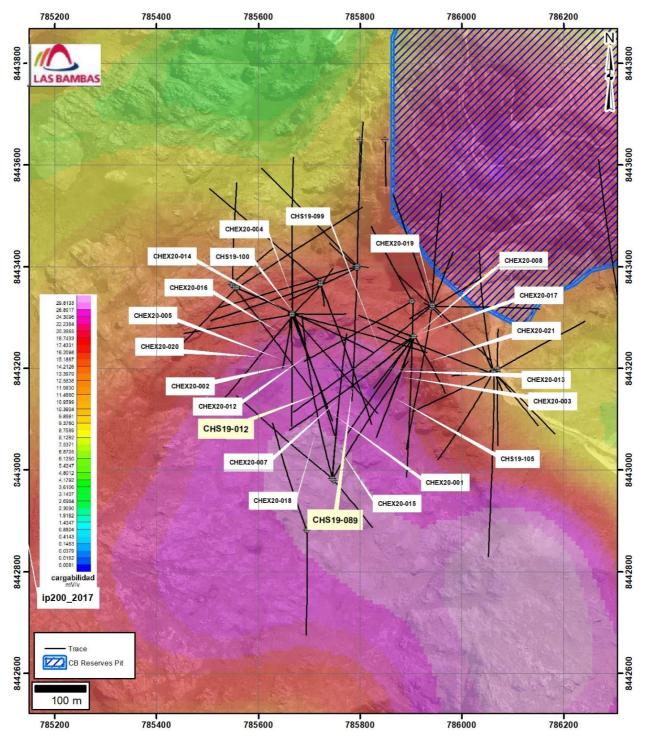
The Chalcobamba Southwest Zone is located immediately southwest of the current Chalcobamba Ore Reserve pit, (Figure 2). Coherent, higher-grade copper skarn (>1% Cu) is located beneath a shallow, unmineralised diorite intrusion that strikes EW and dips gently to the S (figures 4 and 5). Additional geologic controls for the high-grade mineralisation include: faults, dyke margins and favourable stratigraphy that strikes NNW and dips moderately to the

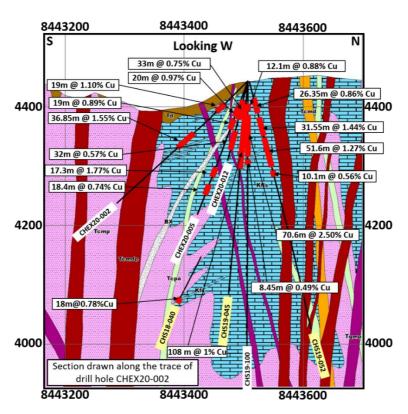

SW. Drill intercepts located on the E and SE side of the prospect are dominated by porphyry style mineralisation; whereas, higher-grade skarn mineralisation is located to the west.

As currently defined, the surface footprint of the skarn and porphyry mineralisation, measures 500 metres in an EW direction and 300 metres in a NS direction. Low-grade, porphyry mineralisation (0.2% to 0.5% Cu) contains by product molybdenum ranging from 200 to 700ppm (see appendix).


A total of 20 drill holes were completed in the first quarter of 2020. Assays for 11 of these drill holes have been received since the 2019 Fourth Quarter Production Report. The results are summarized in the appendix (drill holes: CHS19-099 through CHEX20-12. Highlights include:

•	Hole CHS19-100	70.60m @ 2.50% Cu from 56.00m
•	Hole CHEX20-001	26.00m @ 2.22% Cu from 37.0m 40.40m @ 1.07% Cu from 72.6m 44.10m @ 1.01% Cu from 114.4m
•	Hole CHEX20-002	19.40m @ 1.10% Cu from 54.0m 36.85m @ 1.55% Cu from 126.0m
•	Hole CHEX20-008	19.00m @ 2.06% Cu from 78.0m 56.60m @ 1.47% Cu & 314 ppm Mo from 221.4m


Due to limited drill access, most of the drill holes are drilled at oblique angles to the controlling geologic features and thus the reported interval lengths exceed the true thickness. These drill holes were performed as part of an on-going drilling program for hydrogeological, geotechnical and sterilisation purposes that intersected mineralisation. The current drill locations limit the ability to test all targets and the opportunity to confirm the true width of mineralisation. Drilling will continue from the current platforms until new drilling locations have been permitted, which is targeted for the second half of 2020. A summary of all drilling results to date from this program is provided in the appendix and drill hole collars are shown in Figure 2.


Figure 1. Outline of Las Bambas Mining Concessions highlighting the location of Ore Reserves and Mineral Resources as well as the Chalcobamba Southwest Zone exploration area.

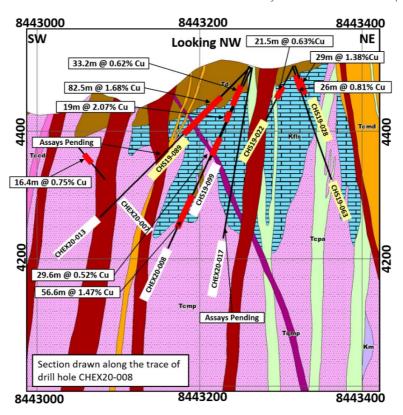

Figure 2. The Chalcobamba Southwest Zone and adjacent Chalcobamba Ore Reserve pit (blue outline) are shown with the traces of all drill holes and the downhole copper grades. Drill holes with white labels were drilled in 2020. Drill hole labels in light yellow indicate select drill holes that were completed in 2019 for reference.

Figure 3. Same area shown in Figures 1 & 2 with base map of IP Chargeability depth slice at 200 metres. Drill holes with white labels were drilled in 2020. Drill hole labels in light yellow indicate drill holes completed in 2019.

Figure 4. Geologic Cross Section drawn along the trace of drill hole CHEX20-002. Drill hole labels with light yellow background indicate holes that were drilled in 2019. Whereas white drill hole labels identify drill holes that were completed in 2020.

Figure 4. Geologic Cross Sections drawn along the trace of drill holes CHEX20-008. Drill hole labels with light yellow background indicate holes that were drilled in 2019. Whereas, white drill hole labels identify holes that were completed in 2020.

DRC

In the first quarter of 2020, exploration activities continued to focus primarily on the development of satellite copper oxide deposits within a roughly 50km radius ("RAD50"), that may be suitable for economic exploitation at the Kinsevere mine. During the quarter, with the southern African wet season in full force, activities comprised mainly data analysis, interpretation, and planning for the 2020 field season. A resource delineation drilling program commenced at the Kinsevere site on the Central Sulphide Extension late in the quarter. In addition, a number of significant copper and cobalt assay results were received during the quarter from the 2019 resource drilling campaigns at Sokoroshe II (PE538) and Nambulwa (PE539).

Copper highlights include (true widths):

- 25.2m @ 2.50% Cu, in drill hole SOK2DD012, from 63.5m downhole
- 31.5m @ 1.87% Cu, in drill hole SOK2DD015, from 30.0m downhole
- 25.3m @ 1.98% Cu, in drill hole SOK2DD016, from 68.0m downhole
- 16.2m @ 2.57% Cu, in drill hole SOK2DD023, from 48.0m downhole
- 14.0m @ 3.31% Cu, in drill hole SOK2RC070, from 37.0m downhole
- 26.7m @ 3.93% Cu, in drill hole NAMRC015, from 53.0m downhole
- 20.1m @ 3.14% Cu, in drill hole NAMRC019, from 32.0m downhole
- 25.5m @ 2.59% Cu, in drill hole NAMRC020, from 25.0m downhole
- 30.0m @ 1.92% Cu, in drill hole NAMRC022, from 18.0m downhole
- 19.1m @ 2.23% Cu, in drill hole NAMRC025, from 24.0m downhole
- 29.2m @ 2.78% Cu, in drill hole NAMRC029, from 18.0m downhole
- 26.2m @ 3.37% Cu, in drill hole NAMRC032, from 9.0m downhole
- 7.9m @ 3.53% Cu, in drill hole NAMRC046, from 44.0m downhole
- 26.8m @ 2.20% Cu, in drill hole NAMRC051, from 18.0m downhole

Cobalt highlights include (true widths):

- 43.3m @ 1.09% Co, in drill hole SOK2DD015, from 30.0m downhole
- 30.4m @ 0.85% Co, in drill hole SOK2DD016, from 60.0m downhole
- 20.0m @ 0.74% Co, in drill hole SOK2DD016, from 109.0m downhole
- 32.6m @ 0.70% Co, in drill hole SOK2DD022, from 97.0m downhole
- 18.2m @ 1.91% Co, in drill hole SOK2DD023, from 50.0m downhole
- 6.5m @ 0.73% Co, in drill hole NAMRC014, from 23.0m downhole
- 12.1m @ 0.32% Co, in drill hole NAMRC015, from 64.0m downhole
- 32.0m @ 0.70% Co, in drill hole NAMRC032, from 6.0m downhole
- 13.2m @ 0.37% Co, in drill hole NAMRC037, from 26.0m downhole
- 9.0m @ 0.37% Co, in drill hole NAMRC049, from 22.0m downhole

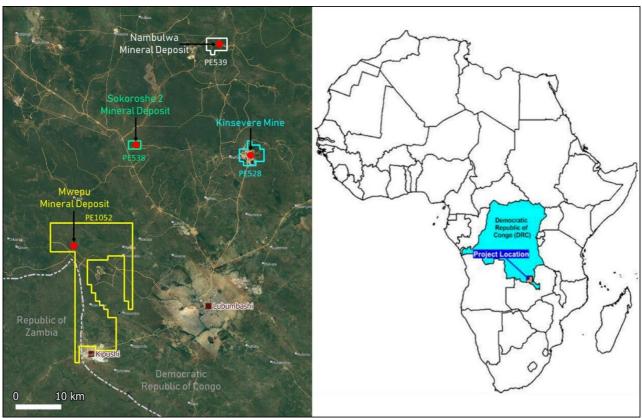
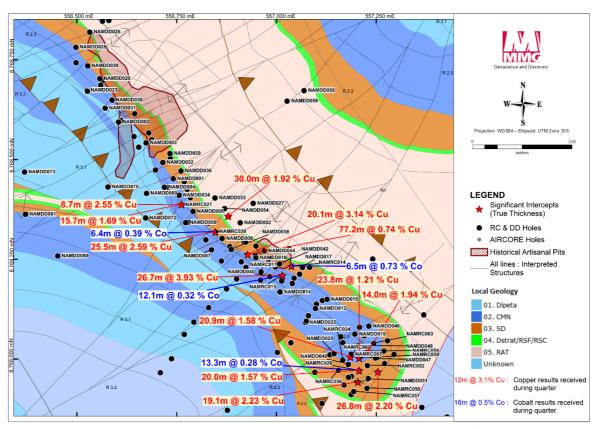
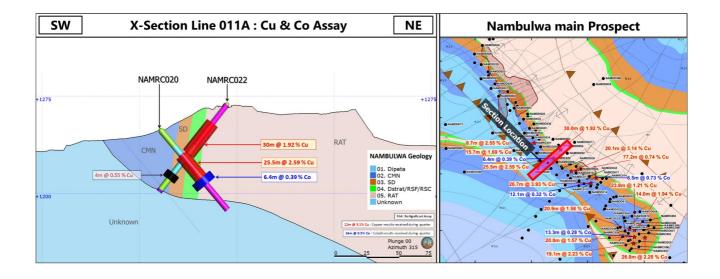


Figure 6. DRC exploration projects.

Kinsevere


In early March, a 1,900m resource delineation drilling program commenced at Kinsevere in the area between the Central and Mashi pits, where high grade sulphides exist below the final pit design. Currently these sulphides are not economically viable for open pit mining due to the large strip ratios associated with overlying low-grade material in the Kinsevere saddle. The objective of the program is to further define the known sulphide resource and to identify additional sulphide mineralisation down-plunge which may increase the global sulphide Mineral Resource.

Mwepu


Activity for the quarter centered around planning for a Proof of Concept study during the first half of the year to determine the potential for economic extraction.

Nambulwa

Activities during the quarter revolved around updating the models for both the Nambulwa Main and DZ deposits. Final wet chemistry assay results were received for all 2019 resource drilling programs and are being incorporated into the model. Planning activities were undertaken during the quarter in preparation for drafting of the Feasibility Study and the Environmental and Social Impact Statement.

Figure 7: Nambulwa Project showing the Nambulwa Main deposit and the best drill intercepts (true width) from the 2019 drill campaign. A full listing of exploration results is shown in the Appendix.

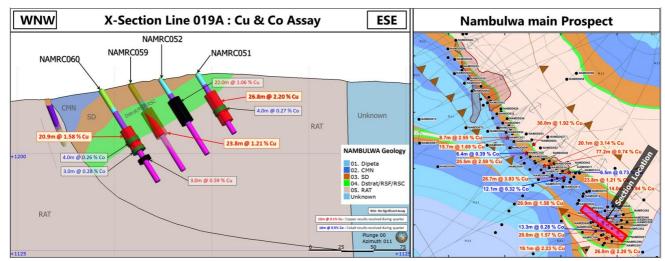
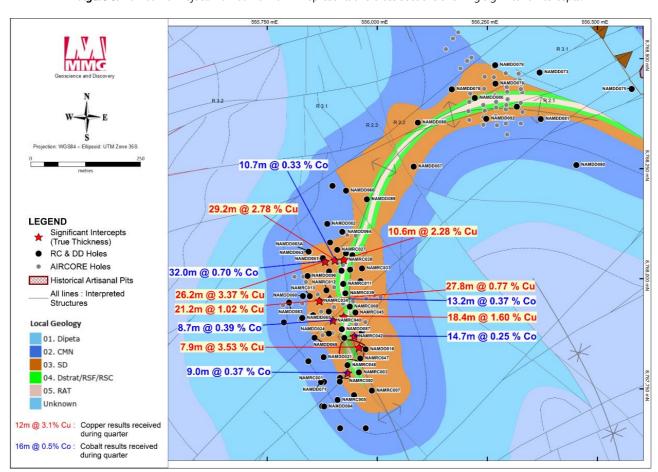



Figure 8: Nambulwa Project: Nambulwa Main - Representative cross sections showing significant intercepts.

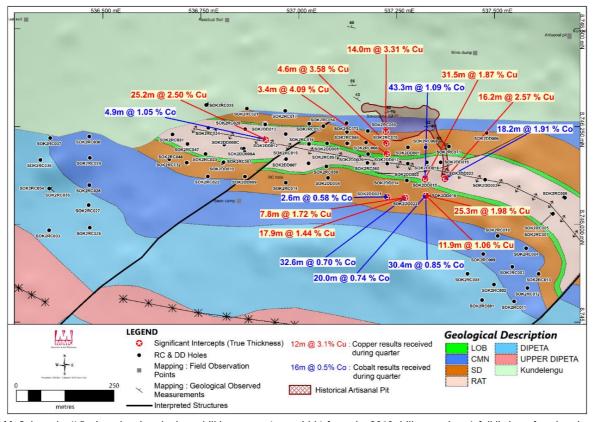

Figure 9: Nambulwa Project showing the DZ deposit and the best drill intercepts from the 2019 drill campaign. A full listing of exploration results is shown in the Appendix.

Figure 10: Nambulwa Project: DZ - Representative cross section showing significant intercepts.

Sokoroshe II

Final wet chemistry assay results were received for the 2019 resource delineation drilling program and are being incorporated into the resource model. The 2019 program was successful in delineating a previously unknown zone of near-surface, lower orebody-hosted, copper-cobalt mineralisation immediately adjacent to the southeast of the main orebody. This newly identified zone, termed the Southern Orebody, measures >150m strike and up to 30m thickness and still open in multiple directions. It is a cobalt dominant zone with high-tenor cobalt intervals and lesser amounts of associated copper. Work during the quarter has focused on inclusion of the resource extensions from last year with respect to the Southern Orebody, into a detailed mining plan. This will likely require the revision of the Feasibility Study and the Environmental and Social Impact Statement as material changes to the pit design and stockpile dimensions are anticipated.

Figure 11: Sokoroshe II Project showing the best drill intercepts (true width) from the 2019 drill campaign. A full listing of exploration results is shown in the Appendix.

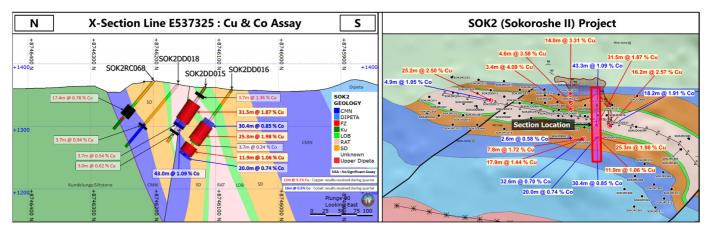


Figure 12: Sokoroshe II Project: Representative cross section showing significant intercepts.

CORPORATE UPDATE

2019 ANNUAL RESULTS

MMG announced its 2019 annual financial results on 4 March 2020, reporting an underlying net loss after tax attributable to equity holders of US\$125.4 million, and net cash flow from operating activities of US\$1,145.1 million. Financial performance during the year was impacted by lower commodity prices, reduced copper sales volumes at Las Bambas following community disruptions and operational challenges in the first half at Kinsevere. This was partially offset by the strong performance of Dugald River in its first full year of commercial production.

A non-cash impairment net of tax of US\$105.0 million to the carrying value of oxide related assets at Kinsevere, resulted in a full year after tax loss attributable to equity holders of US\$230.4 million.

In 2019, MMG's operations produced 451,963 tonnes of copper and 253,520 tonnes of zinc.

MCK UPDATE

On 23 March 2020, the Company announced that MMG Kinsevere was notified that Mining Company Katanga SARL (MCK) has commenced legal proceedings against MMG Kinsevere in the Lubumbashi Courts in the Haut-Katanga Province in the DRC. MMG understands that MCK is associated with former Governor of Katanga Province, Mr. Moise Katumbi and/or his son.

MCK claims that MMG Kinsevere is liable to compensate MCK for losses suffered as a result of MMG Kinsevere's decision to not renew or extend the mining services contract with its associate entity MCK Trucks (then known as NB Mining SA) in 2018, on the basis that MCK was entitled to a "life of mine" agreement with MMG Kinsevere. MCK is seeking an award of damages suffered by MCK of US\$158 million (covering a period of February 2018 to September 2019) plus US\$100 million in punitive damages. The amount claimed appears overstated as it reflects MCK's potential revenues under a mining services contract as opposed to loss of profit.

Although there has been no court hearing on the merits of the case and no judicial assessment of the quantum claimed, MCK has obtained a freezing order over certain assets of MMG Kinsevere via proceedings that have, in MMG's view, not followed usual legal processes in the DRC. MMG has commenced an appeal process against the freezing order and is also defending a number of additional procedural actions commenced by MCK.

MMG Kinsevere and the Company regard the claim as unfounded and opportunistic, and the amount of the claim completely disproportionate to the losses that could reasonably have been suffered. MMG plans to vigorously contest the claim.

In addition, MMG Kinsevere rejects, in the strongest possible terms, the allegations set out in press releases of MCK and a non-government organisation associated with MCK, relayed by certain media, according to which MMG has allegedly attempted to improperly intervene in courts before which the proceedings between the parties are pending. The accusations are without any merit and prejudicial to MMG Kinsevere's reputation. MMG Kinsevere reserves its rights in relation to these allegations.

CORPORATE DETAILS

MELBOURNE OFFICE

Level 23, 28 Freshwater Place Southbank Victoria 3006, Australia T +61 3 9288 0888

HONG KONG OFFICE

Unit 8506A, Level 85 International Commerce Centre 1 Austin Road West, Kowloon, Hong Kong T +852 2216 9688

POSTAL ADDRESS

GPO Box 2982, Melbourne, Victoria, 3001, Australia

MMG LIMITED EXECUTIVE COMMITTEE

GAO Xiaoyu, Chief Executive Officer and Executive Director Ross CARROLL, Chief Financial Officer LI Liangang, Executive General Manager – Commercial Troy HEY, Executive General Manager – Corporate Relations WEI Jianxian, Executive General Manager – Americas

SHARE REGISTRAR

Computershare Hong Kong Investor Services Limited, 17th Floor, Hopewell Centre, 183 Queen's Road East, Hong Kong

IMPORTANT DATES

21 May 2020 - Annual General Meeting

For details please contact Corporate Relations below.

INVESTOR AND MEDIA ENQUIRIES

Blake ERICKSEN

Head of Investor Relations T +61 3 9288 9185 M +61 475 804 341 E InvestorRelations@mmg.com

Andrea ATELL

Head of Corporate Affairs T +61 3 9288 0758 M +61 476 830 491 E CorporateAffairs@mmg.com

Chinese Language:

Maggie QIN

Head of China Relations T +61 3 9288 0818 M +61 411 465 468 E ChinaRelations@mmg.com

Throughout this report figures in italics indicate that this figure has been adjusted since it was previously reported.

APPENDIX – 2020 GUIDANCE

	GUIDANCE SUMMARY	
	2020 GUIDANCE	2019 ACTUAL
Las Bambas		
Copper – production	N/A*	382,518 tonnes
Copper – C1 costs	N/A*	US\$0.99 / lb
Dugald River		
Zinc – production	170,000 – 180,000 tonnes	170,057 tonnes
Zinc – C1 costs	US\$0.70 – US\$0.75 / lb	US\$0.70 / lb
Kinsevere		
Copper – production	68,000 - 75,000 tonnes	67,935 tonnes
Copper – C1 costs	US\$1.80 – US\$1.95 / lb	US\$2.24 / lb
Rosebery		
Zinc – production	55,000 - 65,000 tonnes	83,463 tonnes
Zinc – C1 costs	US\$0.20 - US\$0.30 / lb	US\$0.20/ lb

^{*2020} guidance for Las Bambas was withdrawn on 13 April 2020, due to ongoing uncertainty regarding impact of COVID-19 on operations in Peru.

APPENDIX – PRODUCTION RESULTS

			0	LAS BAME			YEAR-TO	O-DATE
		MAR 2019	JUN 2019	SEP 2019	DEC 2019	MAR 2020	MAR 2020	MAR 2019
Ore mined - copper	tonnes	15,543,100	11,743,412	13,433,089	10,934,016	9,600,874	9,600,874	15,543,100
Ore milled - copper	tonnes	12,822,132	11,992,161	13,683,455	12,785,623	9,898,899	9,898,899	12,822,132
Waste movement	tonnes	28,178,543	25,897,658	39,303,433	34,907,342	35,696,212	35,696,212	28,178,543
COPPER								
Ore mined - grade	%	0.79	0.84	0.80	0.91	0.87	0.87	0.79
Ore milled - grade	%	0.86	0.81	0.81	0.87	0.84	0.84	0.86
Recovery	%	88.5	86.6	87.9	89.4	87.8	87.8	88.5
Production								
Copper concentrate	tonnes	265,311	219,423	247,882	261,513	199,411	199,411	265,311
Grade	%	38.24	38.45	39.13	38.13	36.77	36.77	38.24
Containing	tonnes	101,452	84,373	96,990	99,702	73,319	73,319	101,452
Sales								
Total concentrate sold	tonnes	111,515	271,521	198,477	271,784	217,013	217,013	111,515
Payable metal in product sold	tonnes	41,262	99,001	72,219	100,435	76,262	76,262	41,262
GOLD & SILVER								
Payable metal in product sold - gold	OZ	10,463	27,248	21,889	31,840	24,654	24,654	10,463
Payable metal in product sold - silver	OZ	636,316	1,416,348	1,042,736	1,486,314	1,146,899	1,146,899	636,316
MOLYBDENUM								
Production								
Molybdenum concentrate	tonnes	1,062	1,189	1,015	526	273	273	1,062
Grade	%	48.25	47.33	45.98	45.79	45.55	45.55	48.25
Contained metal produced	tonnes	512	563	467	241	124	124	512
Sales								
Total product sold	tonnes	790	1,097	1,307	775	200	200	790
Payable metal in product sold	tonnes	377	524	612	354	93	93	377

				KINSEVE	RE			
			Q	UARTER ENDE	D		YEAR-T	O-DATE
		MAR 2019	JUN 2019	SEP 2019	DEC 2019	MAR 2020	MAR 2020	MAR 2019
Ore mined - copper	tonnes	600,765	544,845	607,922	708,505	383,158	383,158	600,765
Ore milled - copper	tonnes	508,843	590,577	623,533	632,321	565,148	565,148	508,843
Waste movement	tonnes	3,226,912	4,576,461	5,307,732	3,913,258	2,355,250	2,355,250	3,226,912
COPPER								
Ore mined - grade	%	2.20	2.00	2.50	2.87	2.87	2.87	2.20
Ore milled - grade	%	2.73	2.92	3.06	3.39	3.35	3.35	2.73
Recovery	%	96.3	95.3	96.4	94.7	94.0	94.0	96.3
Production								
Contained metal produced - cathode	tonnes	12,539	16,463	18,495	20,438	18,207	18,207	12,539
Sales								
Total product sold - cathode	tonnes	11,800	15,639	17,804	20,083	17,874	17,874	11,800
Payable metal in product sold - cathode	tonnes	11,800	15,639	17,804	20,083	17,874	17,874	11,800

				DUGALD RI			VEAD TO	DATE
		MAR 2019	JUN 2019	JARTER ENDEL SEP 2019	DEC 2019	MAR 2020	YEAR-TO MAR 2020	MAR 2019
Ore mined	tonnes	393,004	453,261	494,443	513,169	462,570	462,570	393,004
Ore milled	tonnes	457,478	428,651	542,703	546,738	443,378	443,378	457,478
ZINC								
	0/	10.47	10.22	10.50	10.52	0.07	0.07	10.47
Ore mined - grade	%	10.47	10.33	10.50	10.53	9.97	9.97	10.47
Ore milled - grade	%	9.94	9.90	10.30	10.37	9.56	9.56	9.94
Recovery	%	84.7	84.5	84.6	85.1	83.8	83.8	84.7
Production								
Zinc concentrate	tonnes	79,071	73,782	97,005	100,014	72,846	72,846	79,071
Grade	%	48.90	48.59	48.76	48.24	48.74	48.74	48.90
Containing	tonnes	38,665	35,850	47,296	48,247	35,505	35,505	38,665
Sales								
Total product sold	tonnes	55,084	95,148	90,059	100,007	83,429	83,429	55,084
Payable metal in product sold	tonnes	22,676	38,634	36,474	40,625	33,881	33,881	22,676
LEAD								
Ore mined - grade	%	1.73	1.93	1.67	1.86	1.63	1.63	1.73
Ore milled - grade	%	1.63	1.90	1.65	1.87	1.55	1.55	1.63
Recovery	%	67.7	68.3	64.3	66.1	62.2	62.2	67.7
Production								
Lead concentrate	tonnes	8,730	9,147	9,588	11,758	7,622	7,622	8,730
Grade	%	58.14	60.82	59.97	57.54	56.11	56.11	58.14
Containing	tonnes	5,076	5,563	5,750	6,766	4,277	4,277	5,076
Sales								
Total product sold	tonnes	4,313	10,727	10,600	10,756	10,431	10,431	4,313
Payable metal in product sold	tonnes	2,299	5,927	6,042	6,023	5,735	5,735	2,299
SILVER								
Ore milled – grade	g/t	47.93	59.34	53.54	62.73	66.95	66.95	47.93
Payable metal in product sold	OZ	128,644	368,674	351,027	344,958	343,156	343,156	128,644

				ROSEBER	RY			
				O-DATE				
		MAR 2019	JUN 2019	SEP 2019	DEC 2019	MAR 2020	MAR 2020	MAR 2019
Ore mined	tonnes	250,004	248,537	257,342	276,624	221,522	221,522	250,004
Ore milled	tonnes	259,833	251,282	256,572	262,329	234,415	234,415	259,833
ZINC								
Ore mined - grade	%	9.01	9.51	9.83	10.73	8.91	8.91	9.01
Ore milled - grade	%	8.43	9.91	9.56	9.90	8.60	8.60	8.43
Recovery	%	84.4	84.7	87.0	86.9	86.6	86.6	84.4
Production								
Zinc concentrate	tonnes	34,132	39,032	39,859	41,323	32,363	32,363	34,132
Grade	%	54.16	54.00	53.52	54.61	53.93	53.93	54.16
Containing	tonnes	18,486	21,079	21,332	22,566	17,452	17,452	18,486
Sales								
Total product sold	tonnes	37,931	37,968	39,501	32,440	31,744	31,744	37,931
Payable metal in product sold	tonnes	17,705	17,750	18,014	15,004	14,817	14,817	17,705
LEAD								
Ore mined - grade	%	3.08	2.97	3.27	3.53	3.31	3.31	3.08
Ore milled - grade	%	2.98	3.11	3.02	3.28	3.20	3.20	2.98
Recovery	%	76.2	79.0	72.7	79.2	75.5	75.5	76.2
Production								
Lead concentrate	tonnes	9,392	10,261	9,344	11,320	9,155	9,155	9,392
Grade	%	62.93	60.28	60.36	60.19	61.90	61.90	62.93
Containing	tonnes	5,910	6,186	5,640	6,813	5,666	5,666	5,910
Sales								
Total product sold	tonnes	7,245	11,925	10,694	11,008	5,912	5,912	7,245
Payable metal in product sold	tonnes	4,198	7,112	6,081	6,298	3,426	3,426	4,198

	ROSEBERY (continued) QUARTER ENDED							D-DATE
		MAR 2019	JUN 2019	SEP 2019	DEC 2019	MAR 2020	MAR 2020	MAR 2019
Ore mined	tonnes	250,004	248,537	257,342	276,624	221,522	221,522	250,004
Ore milled	tonnes	259,833	251,282	256,572	262,329	234,415	234,415	259,833
COPPER								
Ore mined - grade	%	0.20	0.22	0.21	0.24	0.24	0.24	0.20
Ore milled - grade	%	0.23	0.22	0.24	0.25	0.25	0.25	0.23
Recovery	%	62.4	57.5	62.5	65.8	64.6	64.6	62.4
Production								
Copper concentrate	Tonnes	2,223	1,954	2,381	2,339	2,143	2,143	2,223
Grade	%	17.01	16.50	15.89	18.43	17.95	17.95	17.01
Containing	tonnes	378	322	378	431	385	385	378
Sales								
Total product sold	tonnes	2,649	1,721	2,498	1,699	1,557	1,557	2,649
Payable metal in product sold	tonnes	430	287	402	296	271	271	430
OTHER METALS								
Ore milled grade – gold	g/t	1.4	1.2	1.2	1.5	1.4	1.4	1.4
Ore milled grade -	g/t	101.6	104.3	95.2	113.2	113.4	113.4	101.6
Recovery - gold	%	27.2	21.0	21.4	22.3	23.6	23.6	27.2
Production								
Gold doré	OZ	5,462	3,702	3,650	4,450	3,026	3,026	5,462
Containing - gold	OZ	3,314	2,166	2,171	2,916	1,816	1,816	3,314
Containing - silver	OZ	1,842	1,296	1,202	1,711	993	993	1,842
Sales								
Gold doré sold	OZ	5,679	3,023	4,088	4,061	3,447	3,447	5,679
Payable metal in all products sold - gold	OZ	8,250	6,022	7,254	7,095	5,980	5,980	8,250
Payable metal in all products sold - silver	OZ	544,262	612,630	555,198	574,515	408,630	408,630	544,262

APPENDIX – EXPLORATION

JORC 2012 TABLE 1 – LAS BAMBAS EXPLORATION ACTIVITIES

The following information provided in Table 1 complies with the 2012 JORC Code requirements specified by "Table-1 Section 1-3" of the Code.

Table 1 JORC 2012 Code Table 1 Assessment and Reporting Criteria for Las Bambas Exploration Activity

Assessment Criteria	Commentary							
Section 1 Sampling Te	l chniques and Data							
Sampling techniques	Diamond drilling (DD) was used to obtain an average 2m sample that is half core split, crushed and pulverised to produce a pulp (95% passing 105µm). Diamond core is selected, marked and numbered for sampling by the logging geologist. Sample details are stored in a Geobank database for correlation with returned geochemical assay results.							
	Samples for analysis are bagged, shuffled, re-numbered and de-identified prior to dispatch.							
	Core samples were cut and sampled at an ALS sample preparation laboratory on-site. Samples are then sent to ALS Lima for preparation and analysis.							
	There are no inherent sampling problems recognised.							
	Measures taken to ensure sample representivity include the collection, and analysis of coarse crush duplicates.							
Drilling techniques	The drilling type is wireline diamond core drilling from surface. Drill core is not oriented.							
Drill sample recovery	Recovery is estimated by measuring the recovered core within a drill run length and recorded in the Geobank database. Run by run recovery has been recorded for all 6,226.20 m drilled to date at Chalcobamba Southwest with a recovery of 98.9%. Of diamond drilling in the data used for Mineral Resources estimation for the Sulfobamba, Chalcobamba and Ferrobamba deposits. Diamond drill recovery average is about 97% for all deposits (98% for Sulfobamba, 97% for Chalcobamba and Ferrobamba deposits).							
	The drilling process is controlled by the drill crew and geological supervision provides a means for maximising sample recovery and ensures suitable core presentation. No other measures are taken to maximise core recovery.							
	There is no detectable correlation between recovery and grade which can be determined from graphical and statistical analysis. Preferential loss/gains of fine or coarse materials are not significant and do not result in sample bias as the nature of mineralisation is stock-work veins and disseminated sulphides. Diamond core sampling is applied, and recovery is considered high.							
Logging	100% of diamond drill core has been geologically and geotechnically logged.							
	Geological logging is qualitative and geotechnical logging is quantitative. All drill core is photographed.							
Sub-sampling techniques and sample preparation	All samples are from diamond drill core. Drill core is longitudinally sawn to provide half-core samples within intervals directed by the logging geologist. The remaining half-core is kept and stored in the original sample tray. The standard sampling length is 2m for PQ core (minimum 1.2m) and HQ core (minimum 1.2m, maximum 2.2m) while NQ core is sampled at 2.5m (minimum 1.5m). Sample intervals do not cross geological boundaries.							
	Geological samples have been processed in the following manner: Dried, crushed, pulverised to 95% passing 105µm. Sizing analyses are carried out on one in 10-15 samples.							
	Representivity of samples is checked by duplication at the crush stage in one in every 40 samples. No field duplicates are taken.							
	12-month rolling Quality Assurance / Quality Control (QAQC) analysis of sample preparation techniques indicate the process is appropriate for Las Bambas samples.							

Section 1 Sampling Techniques and Data The sample types, nature, quality and sample preparation techniques are considered appropriate for the style of the Las Bambas mineralisation (porphyry and skarn Cu-Mo mineralisation) by the Competent Person. Routine assay methods undertaken by ALS (Lima) for Las Bambas are as follows: Quality of assay data and laboratory tests Cu, Ag, Pb, Zn, Mo - 0.5g of sample. Digestion by 4-Acids. Reading by Atomic Absorption Spectrometry (AAS). Acid soluble copper - 0.5g sample. Leaching by a 5% solution of H2SO4 at ambient temperature for 1 hour. Reading by AAS. Au - Fire assay with AAS Finish. Over-range results are re-assayed by Gravimetric Finish. 35 elements - Digestion by aqua-regia and reading by ICP. All the above methods with the exception of the acid soluble copper are considered total digest. No geophysical tools, spectrometers or handheld XRF instruments have been used in the analysis of samples external to the ALS laboratory for the estimation of Mineral Resources. For the 2018 and 2019 programmes, duplicated samples were collected at the time of sampling and securely stored. Samples for the 2018 were then sent to the Inspectorate Laboratory, Lima, for third party (umpire) analysis. The 2019 samples are in process. The samples were selected at a rate of 1:40. Results received indicate a good correlation between datasets and show no bias for copper, molybdenum, silver and gold. ALS release monthly QAQC data to Las Bambas for analysis of internal laboratory standard performance. The performance of the laboratory internal standards is within acceptable limits. Las Bambas routinely insert: Primary coarse duplicates: Inserted at a rate of 1:40 samples. Coarse blank samples: Inserted after a high-grade sample (coarse blank samples currently make up about 4.2% of all samples analysed). Pulp duplicates samples: Inserted 1:40 samples. Pulp blank samples are inserted before the coarse blank sample and always after a high-grade sample (pulp blank samples currently make up about 4.2% of all samples analysed). QAQC analysis has shown that for: Blanks: a minimum level of sample contamination by copper was detected during the sample preparation and Duplicates: the analytical precision is within acceptable ranges when compared to the original sample, i.e., more than 90% of the pairs of samples are within the error limits evaluated for a maximum relative error of 10% (R2>0.90). These results were also repeated in the external ALS check samples. Certified Reference Material: acceptable levels of accuracy and precision have been established. Sizing test results are not routinely analysed. Verification of Verification by independent personnel was not undertaken at the time of drilling. However, drilling, core logging and sampling and sampling data is entered by geologists; assay results are entered by the resource geologist after data is checked for assaying outliers, sample swaps, performance of duplicates, blanks and standards, and significant intersections are checked against core log entries and core photos. Errors are rectified before data is entered into the database.

Assessment Criteria

Commentary

Assessment Criteria	Commentary
Section 1 Sampling Te	chniques and Data
	No twinned drillholes have been completed.
	All drillholes are logged using laptop computers directly into the drillhole database (Geobank). All laboratory primary data and certificates are stored on the Las Bambas server.
	The database has internal validation processes which prevent invalid or unapproved records from being stored. Additional manual data validation occurs in Vulcan software before data is used.
	No adjustments have been made to assay data.
Location of data points	Drillholes are set out using UTM co-ordinates with a hand held Differential Global Positioning System (DGPS) and are accurate to within 1m. On completion of drilling, collar locations are picked up by the onsite surveyors using DGPS (Trimble or Topcon). These collar locations are accurate to within 0.5m.
	All drillholes are surveyed using Reflex Gyro Sprint equipment. Measurements are taken every 25 to 50 metres during drilling itself and the entire hole is surveyed with continuous readings/measurements once the hole has been completed. The downhole surveys are considered accurate for Mineral Resources estimation work.
	The datum used is WGS 84 with a UTM coordinate system zone 19 South.
	In June 2018, DIMAP Pty. Ltd processed LiDAR for the area covered by Las Bambas mine site and its surroundings. The Lidar component of the flight was required to generate a point cloud with +7 pts/sqm minimum, with the core area covering the exploration site having a density of +12 pts/sqm. The maps delivered were drafted in UTM coordinates and the projections used were WGS 84. The Lidar surface from this survey is in current use at site and is considered suitable for Mineral Resources and Ore Reserves estimation purposes.
Data spacing and distribution	The scope of this report covers exploration stage drilling at Chalcobamba Southwest. Drill platforms are variably spaced though they are generally about 200m apart. Occasionally, platforms are separated by 100m or less. Multiple, angle holes may be drilled from a single platform and result in an average data spacing of less than 200m.
Sample security	Measures to provide sample security include:
	Adequately trained and supervised sampling personnel.
	Samples are stored in a locked compound with restricted access during preparation.
	Dispatch to various laboratories via contract transport provider in sealed containers.
	Receipt of samples acknowledged by receiving analytical laboratory by email and checked against expected submission list.
	Assay data returned separately in both spreadsheet and PDF formats.
Audit and reviews	No audits on these drilling results have been completed.
	Regular laboratory inspections are completed and documented by corporate exploration staff.

Section 2 Reporting of Exploration Results Mineral tenement and land tenure status The Las Bambas project has tenure over 41 Mineral Concessions. These Mineral Concessions secure the right to the minerals in the area, but do not provide rights to the surface land. Property of surface land is acquired through a separate process. The below map outlines the 41 Mineral Concessions and the mine property owned by MMG. The Las Bambas project has tenure over 41 Mineral Concessions. These Mineral Concessions secure the right to the minerals in the area, but do not provide rights to the surface land. Property of surface land is acquired through a separate process. The below map outlines the 41 Mineral Concessions and the mine property owned by MMG. The Las Bambas project has tenure over 41 Mineral Concessions. These Mineral Concessions secure the right to the minerals in the area.

sults					
ear Deposit	Purpose	Туре	# of DDH	Drill size	Metres Drilled
996 Chalcobamba	Exploration	1,700	6	DIIII DILO	906.4
996 Chalcobamba	Exploration	DDH	9	Unknown	1,367.30
997 Ferrobamba Chalcobamba	Exploration	DDH	4	Unknown	737.8 653.4
997 Ferrobamba Chalcobamba	Exploration	DDH	3 4	Unknown	365.8 658.6
Perrobamba Chalcobamba	Exploration	DDH	4 7	HQ	738 1,590.00
Ferrobamba 005 Chalcobamba Sulfobamba	Resource Evaluation	DDH	109 66 60	HQ	26,839.90 14,754.10 13,943.00
Ferrobamba Chalcobamba Sulfobamba	Resource Evaluation	DDH	125 95 60	HQ	51,004.20 27,982.90 16,971.50
Charcas Azuljaja Ferrobamba			8 4 131		2,614.10 1,968.90 46,710.40
OO7 Chalcobamba Sulfobamba	Resource Evaluation	DDH	134 22	HQ	36,617.60 4,996.60
008 Ferrobamba Chalcobamba	Resource Evaluation	DDH	118 90	HQ	46,773.80 22,096.60
010 Ferrobamba	Resource Evaluation	DDH	91	HQ	28,399.90
Ferrobamba	Resource Evaluation	DDH	23	HQ	12,609.70
Huancarane O15 Huancarane	Sterilisation Sterilisation	DDH DDH	5	HQ	1,265.60
015 Huancarane 015 Ferrobamba	Resource Evaluation	DDH	5 154	HQ HQ	772.60 53,771.70
Ferrobamba	Resource Evaluation	DDH	114		31,206.20
Chalcobamba	Resource Evaluation	DDH	13	HQ	1,880.30
017 Ferrobamba	Resource Evaluation	DDH	27	HQ	17.793.35
Ferrobamba	Resource Evaluation	DDH	83	HQ-NQ- BQ	48,062.70
Chalcobamba	Resource Evaluation	DDH	46	HQ	7,278.60
Chalcobamba SW	Exploration	DDH	/	HQ-NQ-	3,459.50
Ferrobamba	Resource Evaluation	DDH	91	BQ	29,690.70
Ferrobamba Chalcobamba	Resource Evaluation Resource Evaluation	RC DDH	41 8	51/2" PQ-HQ-	5,699.00 1,710.00
119				NQ HO	
Chalcobamba SW	Exploration Exploration	DDH DDH	6 55	HQ PQ-HQ-	2,770.95 22,372.00
Cejrapena	Exploration	DDH	12	NQ HQ	4,215.50
Jatuncharqui	Exploration	DDH	7	HQ-PQ	1,881.55
Chalcobamba SW	Exploration	DDH	23	HQ	6,198.30
O20 Chalcobamba SW	Exploration	RC	1	5 5/8	300.00
Jatuncharqui	Exploration	DDH	6	HQ	1,821.95
	skarn deposits associate		rphyry type s	-	
ca	Jatuncharqui uted in a belt of Cu (Mo-Au) genic belt is controlled by t	Jatuncharqui Exploration Total Ited in a belt of Cu (Mo-Au) skarn deposits associate genic belt is controlled by the Andahuaylas-Yauri Ba	Jatuncharqui Exploration DDH Total Ited in a belt of Cu (Mo-Au) skarn deposits associated with pogenic belt is controlled by the Andahuaylas-Yauri Batholith of	Jatuncharqui Exploration DDH 6 Total 1,876 Ited in a belt of Cu (Mo-Au) skarn deposits associated with porphyry type s genic belt is controlled by the Andahuaylas-Yauri Batholith of Eocene- Olig	Jatuncharqui Exploration DDH 6 HQ

Assessment	Commentary
Criteria	
Section 2 Report	ng of Exploration Results
	The porphyry style mineralisation occurs in quartz-monzonite to granodiorite rocks. Hypogene copper sulphides are the main
	copper bearing minerals with minor occurrence of supergene copper oxides and carbonates near surface. The intrusive rocks of
	the batholith in contact with the Ferrobamba limestones gave rise to contact metamorphism and, in certain locations, skarn
	bodies with Cu (Mo-Au) mineralisation.

Assessment Commentary
Criteria

Section 2 Reporting of Exploration Results

Drillhole Information

CH43200-2 786,070 8,443,199 4,464 0.3 -59.3 153.3 CH432200-3 786,070 8,443,193 4,464 180 -53.3 253.5 CH43650-11 785,800 8,443,629 4,514 180 -59.2 181.8 CH43650-12 785,850 8,443,669 4,514 180 -59.2 181.8 CH343650-12 785,850 8,443,403 4,581 138.7 -65.6 500.8 CH518-023 785,797 8,443,404 4,459 24.9 -65.5 413.6 CH518-040 785,797 8,443,364 4,459 24.9 -65.5 413.6 CH518-040 785,548 8,443,364 4,459 140.2 -60.4 497.1 CH518-045 785,550 8,443,363 4,429 0.7 -59.9 400.4 CH518-049 786,063 8,443,363 4,512 290 -60.6 502.6 CH518-050 785,797 8,443,363 4,512 290 -75.1 <th>HOLEID</th> <th>EASTING</th> <th>NORTHING</th> <th>ELEV</th> <th>AZIMUTH</th> <th>INCLINATION</th> <th>TD</th>	HOLEID	EASTING	NORTHING	ELEV	AZIMUTH	INCLINATION	TD
CH43200-3 786,070 8,443,193 4,464 180 -53.3 253.5 CH43325-1 785,943 8,443,252 4,502 20 -59.3 211.3 CH43650-12 785,800 8,443,659 4,530 180 -69.9 273.3 CH518-023 785,797 8,443,403 4,458 138.7 -65.6 500.8 CH518-034 785,797 8,443,404 4,459 24.9 -65.5 400.8 CH518-034 785,797 8,443,304 4,458 218.7 -65.2 600 CH518-040 785,548 8,443,363 4,458 218.7 -65.2 600 CH518-045 785,550 8,443,363 4,429 0.7 -59.9 400.4 CH518-045 785,550 8,443,363 4,429 0.7 -59.9 400.4 CH518-045 785,957 8,443,363 4,50 315.5 -60.5 545 CH519-03 785,595 8,443,363 4,50 315.5 -60.5				i e			
CH43325-1 785,943 8,443,325 4,502 20 -59.3 211.3 CH43650-11 785,800 8,443,650 4,514 180 -59.2 181.8 CH3650-12 785,805 8,443,650 4,530 180 -69.9 273.3 CH518-023 785,797 8,443,403 4,458 138.7 -65.6 500.8 CH518-024 785,798 8,443,403 4,458 218.7 -65.2 600.1 CH518-040 785,548 8,443,364 4,430 140.2 -60.4 497.1 CH518-049 786,063 8,443,189 4,465 290 -60.6 502.6 CH518-050 785,797 8,443,399 4,458 315.5 -60.6 502.6 CH519-003 785,905 8,443,263 4,501 290 -75 64.7 CH519-004 785,905 8,443,263 4,501 290 -75.1 450 CH519-007 785,905 8,442,263 4,501 290 -75.1	CH43200-3			-	180	-53.3	
CH43650-11 785,800 8,443,669 4,514 180 -59.2 181.8 CH43650-12 785,890 8,443,650 4,530 180 -69.9 273.3 CHS18-023 785,797 8,443,403 4,458 138.7 -65.5 500.8 CHS18-028 785,797 8,443,404 4,459 24.9 -65.5 413.6 CHS18-040 785,548 8,443,364 4,430 140.2 -60.4 497.1 CHS18-045 785,550 8,443,363 4,429 0.7 -59.9 400.4 CHS18-049 786,063 8,443,363 4,429 0.7 -59.9 400.4 CHS18-049 786,063 8,443,363 4,501 290 -75 64.7 CHS19-003 785,905 8,443,262 4,501 290 -75.1 450 CHS19-004 785,905 8,443,262 4,501 290 -75.1 450 CHS19-017 786,668 8,443,194 4,66 382.9 -64.9		,		-			
CH3650-12 785,850 8,443,650 4,530 180 -69.9 273.3 CH518-023 785,798 8,443,403 4,458 138.7 -65.6 500.8 CH518-034 785,798 8,443,403 4,458 218.7 -65.2 600 CH518-040 785,550 8,443,364 4,459 218.7 -65.2 600 CH518-040 785,550 8,443,363 4,429 0.7 -59.9 400.4 CH518-049 786,663 8,443,189 4,465 290 -60.6 502.6 CH518-050 785,797 8,443,363 4,501 290 -75 64.7 CH519-004 785,905 8,443,263 4,501 290 -75 64.7 CH519-004 785,905 8,443,263 4,501 290 -75 64.7 CH519-011 786,666 8,443,304 4,464 348.2 -65.1 529.6 CH519-016 785,668 8,443,308 4,461 348.2 -65.1							
CHS18-023 785,797 8,443,403 4,458 138.7 -65.6 500.8 CHS18-024 785,798 8,443,404 4,459 24.9 -65.5 413.6 CHS18-034 785,797 8,443,303 4,458 218.7 -65.2 600 CHS18-040 785,548 8,443,363 4,429 0.7 -59.9 400.4 CHS18-045 786,063 8,443,363 4,429 0.7 -59.9 400.4 CHS18-050 785,797 8,443,399 4,458 315.5 -60.5 545 CHS19-003 785,905 8,443,263 4,501 290 -75.1 450 CHS19-004 785,905 8,443,262 4,501 290 -75.1 450 CHS19-006 785,749 8,442,979 4,436 348.2 -65.1 529.6 CHS19-011 786,668 8,443,194 4,464 348.2 -65.1 529.6 CHS19-019 785,746 8,442,818 4,435 309.59 -60.3		,					
CHS18-028 785,798 8,443,404 4,459 24.9 -65.5 413.6 CHS18-034 785,797 8,443,403 4,458 218.7 -65.2 600 CHS18-040 785,548 8,443,363 4,450 140.2 -60.4 497.1 CHS18-045 785,550 8,443,363 4,429 0.7 -59.9 400.4 CHS18-049 786,063 8,443,369 4,429 0.7 -59.9 400.4 CHS18-050 785,797 8,443,399 4,458 315.5 -60.5 502.6 CHS18-050 785,797 8,443,399 4,458 315.5 -60.5 545 CHS19-003 785,905 8,443,262 4,501 290 -75.1 450 CHS19-004 785,905 8,443,262 4,501 290 -75.1 450 CHS19-006 785,749 8,442,979 4,436 138.9 -64.9 286.6 CHS19-011 786,064 8,443,308 4,443 159.7 -60.4 509.6 CHS19-012 785,668 8,443,308 4,443 159.7 -60.4 509.6 CHS19-016 785,668 8,443,308 4,443 159.7 -60.4 509.6 CHS19-020 785,553 8,442,881 4,435 340 -65.5 500 CHS19-020 785,553 8,443,371 4,429 50 -65 231.5 CHS19-022 785,943 8,443,314 4,464 59.9 -60.3 500.6 CHS19-027 785,746 8,442,983 4,435 29.51 -60.3 50.6 CHS19-027 785,746 8,442,983 4,435 29.51 -60.4 50.6 CHS19-037 785,746 8,442,983 4,435 29.51 -60.4 50.6 CHS19-037 785,746 8,443,394 4,465 59.96 -59.89 400 CHS19-034 785,558 8,443,337 4,429 20.0 6.031 314.5 CHS19-034 785,568 8,443,330 4,436 180 -50.31 314.5 CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-040 785,667 8,443,309 4,458 182.28 -55.58 450 CHS19-040 785,667 8,443,309 4,458 182.28 -55.58 450 CHS19-040 785,667 8,443,309 4,458 310.08 -79.3 408.4 CHS19-040 785,667 8,443,309 4,458 310.08 -79.3 408.4 CHS19-050 785,942 8,443,322 4,502 30.0 -75.53 429.7 CHS19-050 785,942 8,443,309 4,458 310.08 -79.3 408.4 CHS19-050 785,942 8,443,366 4,457 310.19 44.99 328.6							
CHS18-034 785,797 8,443,403 4,458 218.7 -65.2 600 CHS18-040 785,550 8,443,364 4,430 140.2 -60.4 497.1 CHS18-049 785,550 8,443,363 4,429 0.7 -59.9 400.4 CHS18-050 785,797 8,443,399 4,458 315.5 -60.5 545 CHS19-003 785,905 8,443,263 4,501 290 -75.1 450 CHS19-004 785,905 8,443,263 4,501 290 -75.1 450 CHS19-006 785,749 8,442,979 4,436 138.9 -64.9 286.6 CHS19-011 786,668 8,443,194 4,464 348.2 -65.1 529.6 CHS19-016 785,746 8,442,983 4,435 340 -65.5 500 CHS19-020 785,546 8,442,983 4,435 309.59 -60.38 500 CHS19-024 785,694 8,442,880 4,47 179.25 59.68							
CHS18-040 785,548 8,443,364 4,430 140.2 -60.4 497.1 CHS18-045 785,550 8,443,363 4,429 0.7 -59.9 400.4 CHS18-049 786,063 8,443,389 4,465 290 -60.6 502.6 CHS18-050 785,797 8,443,389 4,458 315.5 -60.5 545 CHS19-004 785,905 8,443,263 4,501 290 -75.1 450 CHS19-004 785,798 8,442,2979 4,436 138.9 -64.9 286.6 CHS19-001 785,668 8,443,194 4,464 348.2 -65.1 529.6 CHS19-010 785,668 8,443,308 4,433 159.7 -60.4 509.6 CHS19-010 785,668 8,442,881 4,353 340 -65.5 500 CHS19-010 785,553 8,443,371 4,429 50 -65 231.5 CHS19-020 785,543 8,443,344 4,465 29.6 -65	CHS18-034				218.7	-65.2	600
CHS18-049 786,063 8,443,189 4,465 290 -60.6 502.6 CHS18-050 785,797 8,443,399 4,458 315.5 -60.5 545 CHS19-003 785,905 8,443,263 4,501 290 -75.1 450 CHS19-004 785,905 8,443,262 4,501 290 -75.1 450 CHS19-006 785,749 8,442,979 4,436 138.9 -64.9 286.6 CHS19-011 786,064 8,443,194 4,464 348.2 -65.1 529.6 CHS19-011 785,695 8,442,881 4,435 340 -65.5 500 CHS19-016 785,695 8,442,881 4,435 340 -65.5 500 CHS19-016 785,695 8,442,881 4,435 340 -65.5 500 CHS19-019 785,746 8,442,983 4,435 309.59 -60.38 500 CHS19-020 785,553 8,443,371 4,429 50 -65 231.5 CHS19-024 785,694 8,442,880 4,447 1792.5 -59.68 398.2 CHS19-024 785,694 8,442,983 4,435 29.51 -60.45 519 CHS19-027 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-037 785,944 8,443,332 4,502 90.4 -60.06 400 CHS19-031 785,588 8,443,358 4,429 224.09 -60.31 314.5 CHS19-034 785,588 8,443,358 4,429 224.09 -60.31 314.5 CHS19-037 785,942 8,443,354 4,465 210.16 -59.92 400 CHS19-030 785,667 8,443,307 4,442 89.87 74.81 400.3 CHS19-040 785,667 8,443,307 4,442 89.87 74.81 400.3 CHS19-041 786,063 8,443,194 4,465 265.65 -79.04 444.8 CHS19-040 785,667 8,443,307 4,442 89.87 74.81 400.3 CHS19-041 786,063 8,443,307 4,442 89.87 74.81 400.3 CHS19-045 785,666 8,443,307 4,442 89.87 75.24 81.65 CHS19-046 785,903 8,443,319 4,466 180 -50 CHS19-047 785,666 8,443,307 4,442 89.87 774.81 400.3 CHS19-045 785,666 8,443,309 4,445 330.34 -64.91 388.9 CHS19-046 785,903 8,443,319 4,466 330.34 -64.91 388.9 CHS19-046 785,903 8,443,309 4,442 358.85 -75.3 429.7 CHS19-050 785,666 8,443,309 4,442 358.85 -75.3 429.	CHS18-040	785,548	8,443,364	4,430	140.2	-60.4	497.1
CHS18-050 785,797 8,443,399 4,458 315.5 -60.5 545 CHS19-003 785,905 8,443,263 4,501 290 -75 64.7 CHS19-004 785,905 8,443,262 4,501 290 -75.1 450 CHS19-006 785,749 8,442,979 4,436 138.9 -64.9 286.6 CHS19-011 786,668 8,443,3194 4,464 348.2 -65.1 529.6 CHS19-010 785,668 8,442,381 4,35 340 -65.5 500 CHS19-010 785,668 8,442,881 4,435 340 -65.5 500 CHS19-020 785,553 8,443,323 4,435 309.59 -60.38 500 CHS19-020 785,553 8,443,325 4,502 190 -60 550.6 CHS19-020 785,543 8,443,324 4,465 59.96 -59.89 400 CHS19-027 785,694 8,442,880 4,47 179.25 -59.68 <t< td=""><td>CHS18-045</td><td>785,550</td><td>8,443,363</td><td>4,429</td><td>0.7</td><td>-59.9</td><td>400.4</td></t<>	CHS18-045	785,550	8,443,363	4,429	0.7	-59.9	400.4
CHS19-003 785,905 8,443,263 4,501 290 -75 64.7 CHS19-004 785,905 8,443,262 4,501 290 -75.1 450 CHS19-001 785,749 8,442,979 4,436 138.9 -64.9 286.6 CHS19-011 786,064 8,443,194 4,464 348.2 -65.1 529.6 CHS19-016 785,668 8,443,308 4,443 159.7 -60.4 509.6 CHS19-016 785,665 8,442,881 4,435 340 -65.5 500 CHS19-019 785,546 8,442,983 4,435 309.59 -60.38 500 CHS19-020 785,553 8,443,371 4,429 50 -65 231.5 CHS19-022 785,943 8,443,322 4,502 190 -60 550.6 CHS19-025 786,063 8,443,194 4,465 59.96 -59.89 400 CHS19-025 785,694 8,443,322 4,502 29.51 -60.45 <	CHS18-049	786,063	8,443,189	4,465	290	-60.6	502.6
CHS19-004 785,905 8,443,262 4,501 290 -75.1 450 CHS19-006 785,749 8,442,979 4,436 138.9 -64.9 286.6 CHS19-011 786,064 8,443,194 4,464 348.2 -65.1 529.6 CHS19-012 785,668 8,443,308 4,443 159.7 -60.4 509.6 CHS19-019 785,695 8,442,881 4,435 340 -65.5 500 CHS19-019 785,746 8,442,983 4,435 309.59 -60.38 500 CHS19-020 785,553 8,443,371 4,429 50 -65 231.5 CHS19-022 785,943 8,443,325 4,502 190 -60 550.6 CHS19-025 786,663 8,443,194 4,465 59.96 -59.89 400 CHS19-027 785,746 8,443,324 4,455 29.51 -60.45 519 CHS19-028 785,944 8,443,325 4,502 90.4 -60.06	CHS18-050	785,797	8,443,399	4,458	315.5	-60.5	545
CHS19-006 785,749 8,442,979 4,436 138.9 -64.9 286.6 CHS19-011 786,064 8,443,194 4,464 348.2 -65.1 529.6 CHS19-012 785,668 8,443,308 4,443 159.7 -60.4 509.6 CHS19-019 785,695 8,442,881 4,435 340 -65.5 500 CHS19-019 785,746 8,442,881 4,435 309.59 -60.38 500 CHS19-020 785,553 8,443,371 4,429 50 -65 231.5 CHS19-022 785,943 8,443,325 4,502 190 -60 550.6 CHS19-025 786,063 8,443,194 4,465 59.96 -59.89 400 CHS19-025 786,063 8,443,194 4,465 59.96 -59.89 400 CHS19-028 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-033 786,063 8,443,194 4,465 210.16 -59.92	CHS19-003	785,905	8,443,263	4,501	290	-75	64.7
CHS19-011 786,064 8,443,194 4,464 348.2 -65.1 529.6 CHS19-012 785,668 8,443,308 4,443 159.7 -60.4 509.6 CHS19-016 785,695 8,442,983 4,435 340 -65.5 500 CHS19-019 785,746 8,442,983 4,435 390.59 -60.38 500 CHS19-020 785,553 8,443,371 4,429 50 -65 231.5 CHS19-022 785,943 8,443,325 4,502 190 -60 550.6 CHS19-024 785,694 8,442,880 4,447 179.25 -59.68 398.2 CHS19-025 786,063 8,443,194 4,465 59.96 -59.89 400 CHS19-027 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-028 786,063 8,443,195 4,465 210.16 -59.92 400 CHS19-033 786,063 8,443,395 4,429 224.09 -60.31 <td>CHS19-004</td> <td>785,905</td> <td>8,443,262</td> <td>4,501</td> <td>290</td> <td>-75.1</td> <td>450</td>	CHS19-004	785,905	8,443,262	4,501	290	-75.1	450
CHS19-012 785,668 8,443,308 4,443 159.7 -60.4 509.6 CHS19-016 785,695 8,442,881 4,435 340 -65.5 500 CHS19-019 785,746 8,442,983 4,435 309.59 -60.38 500 CHS19-020 785,593 8,443,371 4,429 50 -65 231.5 CHS19-022 785,943 8,443,325 4,502 190 -60 55.6 CHS19-024 785,694 8,442,880 4,447 179.25 -59.68 398.2 CHS19-025 786,063 8,442,983 4,435 29.51 -60.45 519 CHS19-027 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-027 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-027 785,746 8,442,983 4,455 29.51 -60.45 519 CHS19-028 785,944 8,443,332 4,502 29.51 -60.45	CHS19-006	785,749	8,442,979	4,436	138.9	-64.9	286.6
CHS19-016 785,695 8,442,881 4,435 340 -65.5 500 CHS19-019 785,746 8,442,983 4,435 309.59 -60.38 500 CHS19-020 785,553 8,443,371 4,429 50 -65 231.5 CHS19-022 785,694 8,443,325 4,502 190 -60 550.6 CHS19-024 785,694 8,442,880 4,447 179.25 -59.68 398.2 CHS19-027 786,063 8,443,3194 4,465 59.96 -59.89 400 CHS19-027 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-028 785,944 8,443,322 4,502 90.4 -60.06 400 CHS19-033 786,063 8,443,358 4,429 224.09 -60.31 314.5 CHS19-034 785,795 8,443,358 4,429 224.09 -60.31 314.5 CHS19-037 785,942 8,443,324 4,502 359.67 -60.47<	CHS19-011	786,064	8,443,194	4,464	348.2	-65.1	529.6
CHS19-019 785,746 8,442,983 4,435 309.59 -60.38 500 CHS19-020 785,553 8,443,371 4,429 50 -65 231.5 CHS19-022 785,943 8,443,325 4,502 190 -60 550.6 CHS19-024 785,694 8,442,880 4,447 179.25 -59.68 398.2 CHS19-025 786,063 8,443,194 4,465 59.96 -59.89 400 CHS19-027 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-028 785,944 8,443,322 4,502 90.4 -60.06 400 CHS19-033 786,063 8,443,358 4,429 224.09 -60.31 314.5 CHS19-034 785,558 8,443,396 4,458 182.28 -55.58 450 CHS19-037 785,942 8,443,324 4,502 359.67 -60.47 444.8 CHS19-037 785,943 8,443,324 4,502 359.67 -60.	CHS19-012	785,668	8,443,308	4,443	159.7	-60.4	509.6
CHS19-020 785,553 8,443,371 4,429 50 -65 231.5 CHS19-022 785,943 8,443,325 4,502 190 -60 550.6 CHS19-024 785,694 8,442,880 4,447 179.25 -59.68 398.2 CHS19-025 786,063 8,443,194 4,465 59.96 -59.89 400 CHS19-027 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-028 785,944 8,443,322 4,502 90.4 -60.06 400 CHS19-033 786,063 8,443,358 4,429 224.09 -60.31 314.5 CHS19-034 785,558 8,443,358 4,429 224.09 -60.31 314.5 CHS19-037 785,962 8,443,394 4,502 359.67 -60.47 444.8 CHS19-037 785,904 8,443,332 4,465 180 -50 523.8 CHS19-037 785,904 8,443,307 4,442 89.87 -74.81<	CHS19-016	785,695	8,442,881	4,435	340	-65.5	500
CHS19-022 785,943 8,443,325 4,502 190 -60 550.6 CHS19-024 785,694 8,442,880 4,447 179.25 -59.68 398.2 CHS19-025 786,063 8,442,983 4,465 59.96 -59.89 400 CHS19-027 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-028 785,944 8,443,322 4,502 90.4 -60.06 400 CHS19-033 786,063 8,443,195 4,465 210.16 -59.92 400 CHS19-034 785,558 8,443,358 4,429 224.09 -60.31 314.5 CHS19-036 785,795 8,443,358 4,429 224.09 -60.31 314.5 CHS19-037 785,942 8,443,324 4,502 359.67 -60.47 444.8 CHS19-039 785,942 8,443,332 4,486 180 -50 523.8 CHS19-040 785,667 8,443,307 4,442 89.87 -7	CHS19-019	785,746	8,442,983	4,435	309.59	-60.38	500
CHS19-024 785,694 8,442,880 4,447 179.25 -59.68 398.2 CHS19-025 786,063 8,443,194 4,465 59.96 -59.89 400 CHS19-027 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-028 785,944 8,443,322 4,502 90.4 -60.06 400 CHS19-033 786,063 8,443,195 4,465 210.16 -59.92 400 CHS19-034 785,558 8,443,358 4,429 224.09 -60.31 314.5 CHS19-036 785,795 8,443,396 4,458 182.28 -55.58 450 CHS19-037 785,942 8,443,396 4,450 180 -50 523.8 CHS19-039 785,942 8,443,332 4,466 180 -50 523.8 CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-041 786,063 8,443,193 4,465 265.65 -79.	CHS19-020	785,553	8,443,371	4,429	50	-65	231.5
CHS19-025 786,063 8,443,194 4,465 59.96 -59.89 400 CHS19-027 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-028 785,944 8,443,322 4,502 90.4 -60.06 400 CHS19-033 786,063 8,443,195 4,465 210.16 -59.92 400 CHS19-034 785,558 8,443,358 4,429 224.09 -60.31 314.5 CHS19-036 785,795 8,443,396 4,458 182.28 -55.58 450 CHS19-037 785,942 8,443,324 4,502 359.67 -60.47 444.8 CHS19-039 785,942 8,443,324 4,502 359.67 -60.47 444.8 CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-041 786,063 8,443,194 4,465 265.65 -79.04 449.7 CHS19-043 786,064 8,443,307 4,442 200.31	CHS19-022	785,943	8,443,325	4,502	190	-60	550.6
CHS19-027 785,746 8,442,983 4,435 29.51 -60.45 519 CHS19-028 785,944 8,443,322 4,502 90.4 -60.06 400 CHS19-033 786,063 8,443,195 4,465 210.16 -59.92 400 CHS19-034 785,558 8,443,358 4,429 224.09 -60.31 314.5 CHS19-036 785,795 8,443,396 4,458 182.28 -55.58 450 CHS19-037 785,942 8,443,324 4,502 359.67 -60.47 444.8 CHS19-039 785,904 8,443,332 4,486 180 -50 523.8 CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-041 786,063 8,443,194 4,465 265.65 -79.04 449.7 CHS19-042 785,796 8,443,193 4,464 244.06 -69.23 470.7 CHS19-045 785,666 8,443,307 4,442 200.31	CHS19-024	785,694	8,442,880	4,447	179.25	-59.68	398.2
CHS19-028 785,944 8,443,322 4,502 90.4 -60.06 400 CHS19-033 786,063 8,443,195 4,465 210.16 -59.92 400 CHS19-034 785,558 8,443,358 4,429 224.09 -60.31 314.5 CHS19-036 785,795 8,443,396 4,458 182.28 -55.58 450 CHS19-037 785,942 8,443,324 4,502 359.67 -60.47 444.8 CHS19-039 785,942 8,443,332 4,486 180 -50 523.8 CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-041 786,063 8,443,194 4,465 265.65 -79.04 449.7 CHS19-042 785,796 8,443,193 4,464 244.06 -69.23 470.7 CHS19-045 785,666 8,443,307 4,442 200.31 -85.11 359.5 CHS19-046 785,993 8,443,322 4,502 336.43	CHS19-025	786,063	8,443,194	4,465	59.96	-59.89	400
CHS19-033 786,063 8,443,195 4,465 210.16 -59.92 400 CHS19-034 785,558 8,443,358 4,429 224.09 -60.31 314.5 CHS19-036 785,795 8,443,396 4,458 182.28 -55.58 450 CHS19-037 785,942 8,443,324 4,502 359.67 -60.47 444.8 CHS19-039 785,904 8,443,332 4,486 180 -50 523.8 CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-041 786,063 8,443,194 4,465 265.65 -79.04 449.7 CHS19-042 785,796 8,443,193 4,464 244.06 -69.23 470.7 CHS19-045 785,666 8,443,307 4,442 200.31 -85.11 359.5 CHS19-046 785,903 8,443,332 4,486 330.34 -64.91 388.9 CHS19-049 785,794 8,443,399 4,458 310.0	CHS19-027	785,746	8,442,983	4,435	29.51	-60.45	519
CHS19-034 785,558 8,443,358 4,429 224.09 -60.31 314.5 CHS19-036 785,795 8,443,396 4,458 182.28 -55.58 450 CHS19-037 785,942 8,443,324 4,502 359.67 -60.47 444.8 CHS19-039 785,904 8,443,332 4,486 180 -50 523.8 CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-041 786,063 8,443,194 4,465 265.65 -79.04 449.7 CHS19-042 785,796 8,443,401 4,458 94.94 -75.24 81.65 CHS19-043 786,064 8,443,193 4,464 244.06 -69.23 470.7 CHS19-045 785,666 8,443,307 4,442 200.31 -85.11 359.5 CHS19-048 785,940 8,443,332 4,486 330.34 -64.91 388.9 CHS19-050 786,063 8,443,190 4,464 334.79	CHS19-028	785,944	8,443,322	4,502	90.4	-60.06	400
CHS19-036 785,795 8,443,396 4,458 182.28 -55.58 450 CHS19-037 785,942 8,443,324 4,502 359.67 -60.47 444.8 CHS19-039 785,904 8,443,332 4,486 180 -50 523.8 CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-041 786,063 8,443,194 4,465 265.65 -79.04 449.7 CHS19-042 785,796 8,443,401 4,458 94.94 -75.24 81.65 CHS19-043 786,064 8,443,193 4,464 244.06 -69.23 470.7 CHS19-045 785,666 8,443,307 4,442 200.31 -85.11 359.5 CHS19-046 785,903 8,443,332 4,486 330.34 -64.91 388.9 CHS19-048 785,940 8,443,329 4,458 310.08 -79.3 408.4 CHS19-050 786,063 8,443,399 4,458 310.08	CHS19-033	786,063	8,443,195	4,465	210.16	-59.92	400
CHS19-037 785,942 8,443,324 4,502 359.67 -60.47 444.8 CHS19-039 785,904 8,443,332 4,486 180 -50 523.8 CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-041 786,063 8,443,194 4,465 265.65 -79.04 449.7 CHS19-042 785,796 8,443,401 4,458 94.94 -75.24 81.65 CHS19-043 786,064 8,443,193 4,464 244.06 -69.23 470.7 CHS19-045 785,666 8,443,307 4,442 200.31 -85.11 359.5 CHS19-046 785,903 8,443,332 4,486 330.34 -64.91 388.9 CHS19-048 785,940 8,443,329 4,502 236.43 -80.4 300 CHS19-049 785,794 8,443,399 4,458 310.08 -79.3 408.4 CHS19-050 786,063 8,443,399 4,458 310.08	CHS19-034	785,558	8,443,358	4,429	224.09	-60.31	314.5
CHS19-039 785,904 8,443,332 4,486 180 -50 523.8 CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-041 786,063 8,443,194 4,465 265.65 -79.04 449.7 CHS19-042 785,796 8,443,401 4,458 94.94 -75.24 81.65 CHS19-043 786,064 8,443,193 4,464 244.06 -69.23 470.7 CHS19-045 785,666 8,443,307 4,442 200.31 -85.11 359.5 CHS19-046 785,903 8,443,322 4,502 236.43 -80.4 300 CHS19-048 785,940 8,443,325 4,502 236.43 -80.4 300 CHS19-049 785,794 8,443,399 4,458 310.08 -79.3 408.4 CHS19-050 786,063 8,443,190 4,464 334.79 -82.12 420.4 CHS19-051 785,943 8,443,309 4,442 358.85	CHS19-036	785,795	8,443,396	4,458	182.28	-55.58	450
CHS19-040 785,667 8,443,307 4,442 89.87 -74.81 400.3 CHS19-041 786,063 8,443,194 4,465 265.65 -79.04 449.7 CHS19-042 785,796 8,443,401 4,458 94.94 -75.24 81.65 CHS19-043 786,064 8,443,193 4,464 244.06 -69.23 470.7 CHS19-045 785,666 8,443,307 4,442 200.31 -85.11 359.5 CHS19-046 785,903 8,443,332 4,486 330.34 -64.91 388.9 CHS19-048 785,940 8,443,325 4,502 236.43 -80.4 300 CHS19-049 785,794 8,443,399 4,458 310.08 -79.3 408.4 CHS19-050 786,063 8,443,190 4,464 334.79 -82.12 420.4 CHS19-051 785,943 8,443,309 4,442 358.85 -75.3 429.7 CHS19-052 785,667 8,443,309 4,442 358.85 </td <td>CHS19-037</td> <td>785,942</td> <td>8,443,324</td> <td>4,502</td> <td>359.67</td> <td>-60.47</td> <td>444.8</td>	CHS19-037	785,942	8,443,324	4,502	359.67	-60.47	444.8
CHS19-041 786,063 8,443,194 4,465 265.65 -79.04 449.7 CHS19-042 785,796 8,443,401 4,458 94.94 -75.24 81.65 CHS19-043 786,064 8,443,193 4,464 244.06 -69.23 470.7 CHS19-045 785,666 8,443,307 4,442 200.31 -85.11 359.5 CHS19-046 785,903 8,443,332 4,486 330.34 -64.91 388.9 CHS19-048 785,940 8,443,325 4,502 236.43 -80.4 300 CHS19-049 785,794 8,443,399 4,458 310.08 -79.3 408.4 CHS19-050 786,063 8,443,190 4,464 334.79 -82.12 420.4 CHS19-051 785,943 8,443,309 4,442 358.85 -75.3 429.7 CHS19-052 785,667 8,443,309 4,442 358.85 -75.3 429.7 CHS19-053 785,795 8,443,398 4,457 359.09 </td <td>CHS19-039</td> <td>785,904</td> <td>8,443,332</td> <td>4,486</td> <td>180</td> <td>-50</td> <td>523.8</td>	CHS19-039	785,904	8,443,332	4,486	180	-50	523.8
CHS19-042 785,796 8,443,401 4,458 94.94 -75.24 81.65 CHS19-043 786,064 8,443,193 4,464 244.06 -69.23 470.7 CHS19-045 785,666 8,443,307 4,442 200.31 -85.11 359.5 CHS19-046 785,903 8,443,332 4,486 330.34 -64.91 388.9 CHS19-048 785,940 8,443,325 4,502 236.43 -80.4 300 CHS19-049 785,794 8,443,399 4,458 310.08 -79.3 408.4 CHS19-050 786,063 8,443,190 4,464 334.79 -82.12 420.4 CHS19-051 785,943 8,443,309 4,442 358.85 -75.3 429.7 CHS19-052 785,667 8,443,309 4,442 358.85 -75.3 429.7 CHS19-053 785,722 8,443,398 4,457 359.09 -44.81 402.9 CHS19-055 786,064 8,443,398 4,457 359.09 </td <td>CHS19-040</td> <td>785,667</td> <td>8,443,307</td> <td>4,442</td> <td>89.87</td> <td>-74.81</td> <td>400.3</td>	CHS19-040	785,667	8,443,307	4,442	89.87	-74.81	400.3
CHS19-043 786,064 8,443,193 4,464 244.06 -69.23 470.7 CHS19-045 785,666 8,443,307 4,442 200.31 -85.11 359.5 CHS19-046 785,903 8,443,332 4,486 330.34 -64.91 388.9 CHS19-048 785,940 8,443,325 4,502 236.43 -80.4 300 CHS19-049 785,794 8,443,399 4,458 310.08 -79.3 408.4 CHS19-050 786,063 8,443,190 4,464 334.79 -82.12 420.4 CHS19-051 785,943 8,443,309 4,442 358.85 -75.3 429.7 CHS19-052 785,667 8,443,309 4,442 358.85 -75.3 429.7 CHS19-053 785,722 8,443,366 4,456 159.04 -61.11 584.5 CHS19-054 785,795 8,443,398 4,457 359.09 -44.81 402.9 CHS19-056 785,942 8,443,322 4,502 340 <td>CHS19-041</td> <td>786,063</td> <td>8,443,194</td> <td>4,465</td> <td>265.65</td> <td>-79.04</td> <td>449.7</td>	CHS19-041	786,063	8,443,194	4,465	265.65	-79.04	449.7
CHS19-045 785,666 8,443,307 4,442 200.31 -85.11 359.5 CHS19-046 785,903 8,443,332 4,486 330.34 -64.91 388.9 CHS19-048 785,940 8,443,325 4,502 236.43 -80.4 300 CHS19-049 785,794 8,443,399 4,458 310.08 -79.3 408.4 CHS19-050 786,063 8,443,190 4,464 334.79 -82.12 420.4 CHS19-051 785,943 8,443,322 4,502 310 -79 457.2 CHS19-052 785,667 8,443,309 4,442 358.85 -75.3 429.7 CHS19-053 785,722 8,443,366 4,456 159.04 -61.11 584.5 CHS19-054 785,795 8,443,398 4,457 359.09 -44.81 402.9 CHS19-056 785,942 8,443,322 4,502 340 -45 19.9 CHS19-057 785,795 8,443,401 4,458 252.14	CHS19-042	785,796	8,443,401	4,458	94.94	-75.24	81.65
CHS19-046 785,903 8,443,332 4,486 330.34 -64.91 388.9 CHS19-048 785,940 8,443,325 4,502 236.43 -80.4 300 CHS19-049 785,794 8,443,399 4,458 310.08 -79.3 408.4 CHS19-050 786,063 8,443,190 4,464 334.79 -82.12 420.4 CHS19-051 785,943 8,443,322 4,502 310 -79 457.2 CHS19-052 785,667 8,443,309 4,442 358.85 -75.3 429.7 CHS19-053 785,722 8,443,366 4,456 159.04 -61.11 584.5 CHS19-054 785,795 8,443,398 4,457 359.09 -44.81 402.9 CHS19-055 786,064 8,443,191 4,464 139.67 -70.73 401.6 CHS19-056 785,942 8,443,307 4,458 252.14 -45.13 400 CHS19-059 785,768 8,443,368 4,457 310.19	CHS19-043	786,064	8,443,193	4,464	244.06	-69.23	
CHS19-048 785,940 8,443,325 4,502 236.43 -80.4 300 CHS19-049 785,794 8,443,399 4,458 310.08 -79.3 408.4 CHS19-050 786,063 8,443,190 4,464 334.79 -82.12 420.4 CHS19-051 785,943 8,443,322 4,502 310 -79 457.2 CHS19-052 785,667 8,443,309 4,442 358.85 -75.3 429.7 CHS19-053 785,722 8,443,366 4,456 159.04 -61.11 584.5 CHS19-054 785,795 8,443,398 4,457 359.09 -44.81 402.9 CHS19-055 786,064 8,443,191 4,464 139.67 -70.73 401.6 CHS19-056 785,942 8,443,307 4,458 252.14 -45.13 400 CHS19-058 785,668 8,443,307 4,442 45.3 -75.53 512.7 CHS19-059 785,724 8,443,368 4,457 310.19	CHS19-045	785,666	8,443,307	4,442			359.5
CHS19-049 785,794 8,443,399 4,458 310.08 -79.3 408.4 CHS19-050 786,063 8,443,190 4,464 334.79 -82.12 420.4 CHS19-051 785,943 8,443,322 4,502 310 -79 457.2 CHS19-052 785,667 8,443,309 4,442 358.85 -75.3 429.7 CHS19-053 785,722 8,443,366 4,456 159.04 -61.11 584.5 CHS19-054 785,795 8,443,398 4,457 359.09 -44.81 402.9 CHS19-055 786,064 8,443,191 4,464 139.67 -70.73 401.6 CHS19-056 785,942 8,443,322 4,502 340 -45 19.9 CHS19-057 785,795 8,443,401 4,458 252.14 -45.13 400 CHS19-058 785,668 8,443,368 4,457 310.19 -44.97 407.1 CHS19-060 785,942 8,443,323 4,503 339.62		785,903	8,443,332	4,486	330.34	-64.91	
CHS19-050 786,063 8,443,190 4,464 334.79 -82.12 420.4 CHS19-051 785,943 8,443,322 4,502 310 -79 457.2 CHS19-052 785,667 8,443,309 4,442 358.85 -75.3 429.7 CHS19-053 785,722 8,443,366 4,456 159.04 -61.11 584.5 CHS19-054 785,795 8,443,398 4,457 359.09 -44.81 402.9 CHS19-055 786,064 8,443,191 4,464 139.67 -70.73 401.6 CHS19-056 785,942 8,443,322 4,502 340 -45 19.9 CHS19-057 785,795 8,443,401 4,458 252.14 -45.13 400 CHS19-058 785,668 8,443,307 4,442 45.3 -75.53 512.7 CHS19-059 785,724 8,443,368 4,457 310.19 -44.97 407.1 CHS19-060 785,942 8,443,323 4,503 339.62	CHS19-048	785,940	8,443,325	4,502	236.43	-80.4	300
CHS19-051 785,943 8,443,322 4,502 310 -79 457.2 CHS19-052 785,667 8,443,309 4,442 358.85 -75.3 429.7 CHS19-053 785,722 8,443,366 4,456 159.04 -61.11 584.5 CHS19-054 785,795 8,443,398 4,457 359.09 -44.81 402.9 CHS19-055 786,064 8,443,191 4,464 139.67 -70.73 401.6 CHS19-056 785,942 8,443,322 4,502 340 -45 19.9 CHS19-057 785,795 8,443,401 4,458 252.14 -45.13 400 CHS19-058 785,668 8,443,307 4,442 45.3 -75.53 512.7 CHS19-059 785,724 8,443,368 4,457 310.19 -44.97 407.1 CHS19-060 785,942 8,443,323 4,503 339.62 -44.99 328.6	CHS19-049						
CHS19-052 785,667 8,443,309 4,442 358.85 -75.3 429.7 CHS19-053 785,722 8,443,366 4,456 159.04 -61.11 584.5 CHS19-054 785,795 8,443,398 4,457 359.09 -44.81 402.9 CHS19-055 786,064 8,443,191 4,464 139.67 -70.73 401.6 CHS19-056 785,942 8,443,322 4,502 340 -45 19.9 CHS19-057 785,795 8,443,401 4,458 252.14 -45.13 400 CHS19-058 785,668 8,443,307 4,442 45.3 -75.53 512.7 CHS19-059 785,724 8,443,368 4,457 310.19 -44.97 407.1 CHS19-060 785,942 8,443,323 4,503 339.62 -44.99 328.6				-			
CHS19-053 785,722 8,443,366 4,456 159.04 -61.11 584.5 CHS19-054 785,795 8,443,398 4,457 359.09 -44.81 402.9 CHS19-055 786,064 8,443,191 4,464 139.67 -70.73 401.6 CHS19-056 785,942 8,443,322 4,502 340 -45 19.9 CHS19-057 785,795 8,443,401 4,458 252.14 -45.13 400 CHS19-058 785,668 8,443,307 4,442 45.3 -75.53 512.7 CHS19-059 785,724 8,443,368 4,457 310.19 -44.97 407.1 CHS19-060 785,942 8,443,323 4,503 339.62 -44.99 328.6							
CHS19-054 785,795 8,443,398 4,457 359.09 -44.81 402.9 CHS19-055 786,064 8,443,191 4,464 139.67 -70.73 401.6 CHS19-056 785,942 8,443,322 4,502 340 -45 19.9 CHS19-057 785,795 8,443,401 4,458 252.14 -45.13 400 CHS19-058 785,668 8,443,307 4,442 45.3 -75.53 512.7 CHS19-059 785,724 8,443,368 4,457 310.19 -44.97 407.1 CHS19-060 785,942 8,443,323 4,503 339.62 -44.99 328.6							
CHS19-055 786,064 8,443,191 4,464 139.67 -70.73 401.6 CHS19-056 785,942 8,443,322 4,502 340 -45 19.9 CHS19-057 785,795 8,443,401 4,458 252.14 -45.13 400 CHS19-058 785,668 8,443,307 4,442 45.3 -75.53 512.7 CHS19-059 785,724 8,443,368 4,457 310.19 -44.97 407.1 CHS19-060 785,942 8,443,323 4,503 339.62 -44.99 328.6							
CHS19-056 785,942 8,443,322 4,502 340 -45 19.9 CHS19-057 785,795 8,443,401 4,458 252.14 -45.13 400 CHS19-058 785,668 8,443,307 4,442 45.3 -75.53 512.7 CHS19-059 785,724 8,443,368 4,457 310.19 -44.97 407.1 CHS19-060 785,942 8,443,323 4,503 339.62 -44.99 328.6				-			
CHS19-057 785,795 8,443,401 4,458 252.14 -45.13 400 CHS19-058 785,668 8,443,307 4,442 45.3 -75.53 512.7 CHS19-059 785,724 8,443,368 4,457 310.19 -44.97 407.1 CHS19-060 785,942 8,443,323 4,503 339.62 -44.99 328.6							
CHS19-058 785,668 8,443,307 4,442 45.3 -75.53 512.7 CHS19-059 785,724 8,443,368 4,457 310.19 -44.97 407.1 CHS19-060 785,942 8,443,323 4,503 339.62 -44.99 328.6							
CHS19-059 785,724 8,443,368 4,457 310.19 -44.97 407.1 CHS19-060 785,942 8,443,323 4,503 339.62 -44.99 328.6							
CHS19-060 785,942 8,443,323 4,503 339.62 -44.99 328.6							
CHS19-061 786,063 8,443,192 4,464 147.44 -85.21 464.9				·			
	CHS19-061	786,063	8,443,192	4,464	147.44	-85.21	464.9

Assessment Criteria	Commentary							
Section 2 Report	ing of Exploration Result	ts						
	CHS19-062	785,555	8,443,359	4,429	113.05	-45.23	426.6	
	CHS19-063	785,941	8,443,319	4,502	59.75	-70.38	400	
	CHS19-064	785,724	8,443,368	4,457	250.61	-50.89	362.3	
	CHS19-065	785,666	8,443,305	4,443	140.02	-45.31	362.55	
	CHS19-066	786,065	8,443,191	4,464	135.11	-51.67	272.75	
	CHS19-068	786,318	8,443,271	4,393	349.69	-45.02	470.4	
	CHS19-069	785,559	8,443,359	4,429	57.6	-45.5	411.3	
	CHS19-070	786,064	8,443,192	4,464	180.33	-44.52	495	
	CHS19-071	785,941	8,443,324	4,502	228.99	-44.72	474.3	
	CHS19-072	785,668	8,443,309	4,443	359.22	-52.15	487.25	
	CHS19-077	785,723	8,443,366	4,457	168.76	-85.56	532.75	
	CHS19-079	786,319	8,443,271	4,393	53.81	-44.48	400	
	CHS19-081	785,902	8,443,332	4,486	240.34	-45.06	332	
	CHS19-084	785,668	8,443,306	4,442	105.28	-44.62	380.3	
	CHS19-085	785,942	8,443,323	4,502	285	-68	45.1	
	CHS19-089	785,906	8,443,263	4,501	229.62	-45.05	425.25	
	CHS19-094	785,943	8,443,324	4,503	133.76	-45.15	220.7	
	CHS19-095	785,666	8,443,306	4,443	259.66	-44.94	303.4	
	CHS19-099	785,907	8,443,264	4,501	229.95	-65.37	375.55	
	CHS19-100	785,668	8,443,306	4,443	104.59	-89.17	455.9	
	CHEX20-001	785,666	8,443,305	4,442	159.04	-45.11	315.2	
	CHEX20-002	785,665	8,443,307	4,443	179.11	-44.95	300.6	
	CHEX20-003	785,908	8,443,264	4,501	200.5	-45.07	300	
	CHEX20-004	785,797	8,443,399	4,458	244.26	-59.97	300	
	CHEX20-005	785,667	8,443,308	4,443	190.17	-70	300.2	
	CHEX20-006	786,057	8,443,200	4,467	319.38	3.03	300	
	CHEX20-007	785,746	8,442,983	4,435	3.4	-45.28	404.4	
	CHEX20-008	785,907	8,443,265	4,501	214.88	-65.07	313.55	
	CHS19-105	785,905	8,443,262	4,502	200	-65	325.45	
	CHEX20-012	785,671	8,443,308	4,442	159.7	-74.7	350.95	
	CHEX20-013	785,907	8,443,264	4,501	214.47	-44.84	334.05	
	CHEX20-014	785,559	8,443,358	4,429	113.29	-64.86	300.15	
	1 1 1							

CHEX20-015

CHEX20-016

CHEX20-017

CHEX20-018

CHEX20-020

CHEX20-021

785,745

785,670

785,908

785,746

785,669

785,907

8,442,982

8,443,306

8,443,266

8,442,984

8,443,305

8,443,265

4,436

4,442

4,501

4,436

4,443

4,501

3.9

235

220.11

345.12

219.7

150.7

-64.92

-65.38

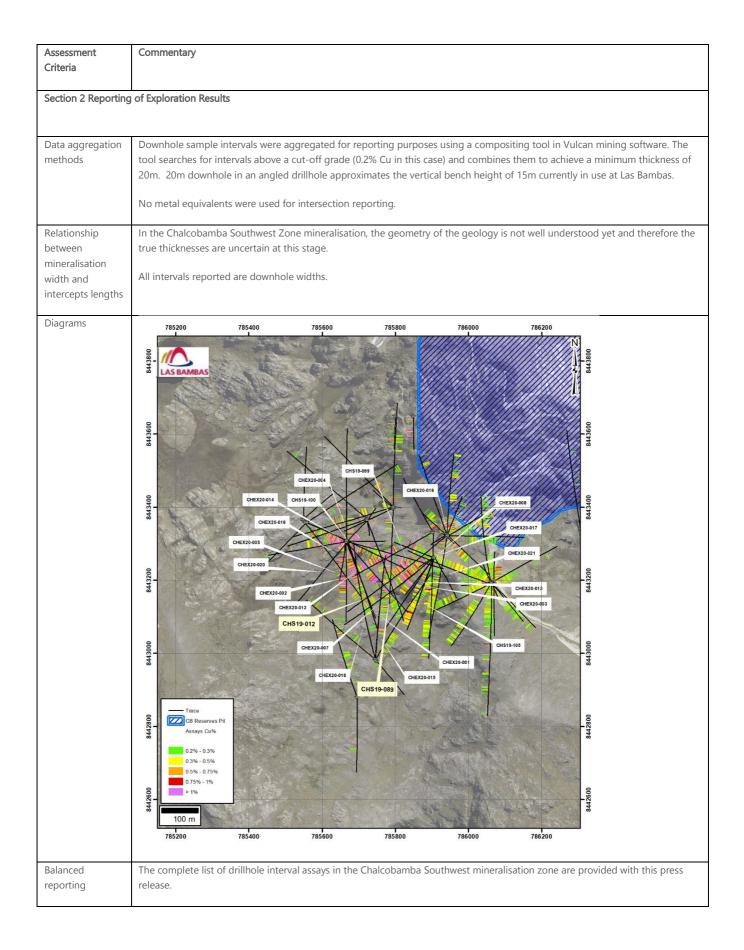
-45.27

-45.34

-64.9

-80

300.05


313.6

302.1

437.6

300.65

300

Assessment	Commentary
Criteria	
Section 2 Reporting	g of Exploration Results
Other and a colorate anti-	Overthe great 2 years according to the style days at all as hove been posited out including allows according using densities and a
Other substantive exploration data	Over the past 3 years, several orebody knowledge studies have been carried out including skarn zonation, vein densities and a large age dating program. Results from these studies are assisting with improving the understanding of the orebodies. Studies
exploration data	on clay and talc mapping are also ongoing.
	Ground gravity, IP and magnetometry are performed routinely on all exploration projects. Aerial magnetometry, radiometric
	and EM surveys have been flown.
	Surface mapping, rock chip sampling and soil grid geochemistry are performed routinely on all exploration projects.

	Ta :
Assessment	Commentary
Criteria	
Section 3 Estimatio	n and Reporting of Mineral Resources
Database integrity	The following measures are in place to ensure database integrity:
	All Las Bambas drillhole data is stored in an SQL database (Geobank) on the Las Bambas site server, which is regularly backed-up.
	The entire database was migrated from acQuire to Geobank in 2019
	 Geological logging is entered directly into laptop computers which are uploaded to the database. Prior to November 2014, diamond drillholes were logged on paper logging forms and transcribed into the database. From November 2015 logging was entered directly into a customised interface using portable tablet computers.
	Assays are loaded directly into the database from digital files provided from the assay laboratory.
	The measures described above ensure that transcription or data entry errors are minimised.
	Data validation procedures include:
	 A database validation project was undertaken in early 2015 checking 5% of the assayed samples in the database against original laboratory certificates. No material issues were identified.
	The database has internal validation processes which prevent invalid or unapproved records to be stored.
Site visits	The Competent Person has undertaken numerous site visits to Las Bambas since acquisition. In the view of the Competent Person there are no material risks to the Mineral Resources based on observations of site practices.
	Several site visits to the Ferrobamba area and the Chalcobamba area have been conducted but due to local community restrictions, the Competent Person has been unable to visit Sulfobamba to date.
Geological interpretation	 Initial resource definition drilling at the Chalcobamba Southwest Zone continues with associated geological sectional interpretations currently in progress. Significant drill intercepts > 1.0% Cu are associated with limestone-hosted skarn alteration; whereas lower grade mineralisation is hosted by porphyry style alteration. 3-D modelling will commence once the 2019 drill program has been completed. The factors affecting continuity both of grade and geology.
Dimensions	The surface projection of the drill intercepts reported here and located along the SW margin of the Chalcobamba pit (Table 2 - below) measures roughly 400 metres in a NE direction and 600 metres in a NW/SE direction.

Estimation and modelling techniques	Not applicable as no Mineral Resource is being reported at this time.
Moisture	Not applicable as no Mineral Resource is being reported at this time.
Cut-off parameters	A cut-off grade of 0.2% Cu was applied to the intersections reported. The basis for this cut-off is that it approximates the average cut-off grade for the Mineral Resource reported at the other Las Bambas deposits.
Mining factors or assumptions	No specific mining factors have been applied to this deposit, however it is expected that similar methods planned for the mining of Chalcobamba would be equally applied to this area.
Metallurgical factors or assumptions	Sulphide and partially oxidised material is included in the Mineral Resources which is expected to be converted to Ore Reserves and treated in the onsite concentrator facilities.
	No other metallurgical factors have been applied to the Mineral Resources.
Environmental factors or assumptions	Environmental factors are considered in the Las Bambas life of asset work, which is updated annually and includes provision for mine closure.
assumptions	Geochemical characterisation undertaken in 2007, 2009 and 2017 indicate most of the waste rock from Ferrobamba and Chalcobamba deposits to be Non-Acid Forming (NAF) and that no acid rock drainage from the waste rock dumps from these two pits should be expected. Waste rock samples from Sulfobamba were found to contain higher concentrations of sulphur and that 30% to 40% of waste rock could be Potentially Acid Forming (PAF). Suitable controls will be implemented for all PAF waste rock, including investigating opportunities for backfill into pit voids. It is expected that there will be no material difference in the character of material from this area to Chalcobamba overall. Additional geochemical characterisation work is required.
	Tailings generated from processing of Ferrobamba and Chalcobamba were determined to be NAF. Geochemical characterisation of tailings generated from processing of Sulfobamba ores is currently under assessment, however for environmental assessment purposes it was assumed to have PAF behaviour. Current Life of Asset schedules have Ferrobamba tailings processing scheduled for several years after Sulfobamba tailings are processed. A closure plan was submitted and approved by the regulator in 2016 and describes the encapsulation method for Sulfobamba tailings.
	Based on the current TSF design and the design assumptions for dry settled density and beach angle, the TSF at Las Bambas has a final capacity of 784Mt of tailings from processing 800Mt. Three studies have been conducted looking at increasing tailings storage capacity at Las Bambas:
	Tailings characterisation test work to assess final settled density and beach slope in current TSF.
	Options assessment to increase capacity at TSF currently under construction.
	Pre-feasibility study for an additional TSF.
Bulk density	Bulk density is determined using the Archimedes' principle (weight in air and weight in water method). Samples of 20cm in length are measured at a frequency of approximately one per core tray and based on geological domains. The density measurements are considered representative of each lithology domain.
	Bulk density measurement occurs at the external, independent assay laboratory. The core is air dried and whole core is wax coated prior to bulk density determination to ensure that void spaces are accounted for.
	Density values in the Mineral Resources models are estimated using Ordinary Kriging within the lithology domain shapes. Unestimated blocks were assigned a density value based on an expected value of un-mineralised rock within each geological domain.
Classification	Not applicable as no Mineral Resource is being reported at this time.
Audits or reviews	No audits or reviews have been undertaken on Chalcobamba SW

Discussion of relative accuracy / confidence

There is high geological confidence of the spatial location, continuity and estimated grades of the modelled lithologies within this deposit. Minor, local variations are expected to occur on a sub-25m scale that is not detectable by the current drill spacing. Global declustered statistics of the composite databases on a domain basis were compared against the block model. Block model estimates were within 10% of the composite database. Local swath plots were undertaken for each deposit. All plots showed appropriate smoothing of composite samples with respect to estimated block grades.

Table 2 – Summary of Significant Downhole Intercepts, Las Bambas, Chalcobamba Southwest Zone

Note: NSI = no significant intersection

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)
CH43200-2	2.5	72.1	69.6	0.49	0.02	172	1.1
CH43200-3	46	77.5	31.5	0.26	0.03	184	0.8
	83.2	196	112.8	0.24	0.02	136	0.6
CH43325-1	12.4	59.4	47	0.75	0.03	7	3.5
CH43650-11	147.5	167.5	20	0.55	0.02	88	1.7
CH43650-12	11	42.9	31.9	0.46	0.02	5	2
	106.9	141.3	34.4	1.47	0.07	10	6.9
	160.8	181.1	20.4	0.46	0.02	14	2.1
CHS18-023	46.2	90.6	44.4	1.21	0.05	20	3.5
	301	321	20	0.27	0.01	291	0.9
	354.5	382.8	28.3	0.29	0.01	304	0.8
	397.7	435.1	37.4	0.26	0.01	228	0.7
	454.6	492	37.4	0.23	0.01	246	0.6
CHS18-028	99.5	119.7	20.2	0.82	0.04	18	4
	278.2	338.5	60.3	0.31	0.01	89	1.2
CHS18-034	34.7	54.7	20	0.22	0.01	8	0.7
	82.6	102.8	20.2	0.22	0.01	21	0.7
	381.5	401.5	20	0.51	0.01	4	1.2
	535.6	571.3	35.7	0.46	0.01	164	1.9
CHS18-040	83.5	116.7	33.2	0.38	0.02	8	1.4
	133.1	153.1	20	0.25	0.03	127	1.1
	206.9	226.9	20	1.2	0.06	26	4.4
	411.7	439.9	28.3	0.91	0.05	72	3.4
	461.9	497.1	35.2	0.27	0.01	417	1.3
CHS18-045				NSI			
CHS18-049	0.9	382.1	381.2	0.37	0.01	263	1
	397.5	423.9	26.4	0.23	0.01	141	0.6
	426.1	472.3	46.2	0.28	0.01	225	0.7
CHS18-050	30.9	50.9	20	0.47	0.05	6	1.7
	86.4	106.4	20	0.21	0.01	4	1.2
	122.8	156.7	33.9	0.66	0.02	12	2.1
CHS19-003				NSI			
CHS19-004	20	41	21	0.8	0.04	24	3.4
	48	68	20	0.27	0.01	5	1.1
	128	148	20	0.42	0.02	9	1.5
	201	260.5	59.5	1.01	0.06	17	3.9
	278	298	20	0.23	0.01	289	0.8
CHS19-006	1			NSI			
CHS19-011	0	35.7	35.7	0.44	0.02	125	1.1
	49.9	153	103.1	0.54	0.02	299	1.5
	259	279	20	0.25	0.01	116	0.8
	289.5	309.5	20	0.23	0.01	86	0.7
	333.8	371	37.2	0.25	0.01	77	0.5
	391	411	20	0.26	0.01	78	0.5
	423	447	24	0.38	0.01	63	0.7
	463	490	27	0.23	0.01	67	0.7
CHS19-012	24.8	44.8	20	0.38	0.02	144	1.2
0.1015 012	107	233.8	126.8	1.39	0.04	7	4.7

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)
	282	325.7	43.7	0.34	0.01	560	1.8
CHS19-016				NSI			
CHS19-019	23	33.2	10.2	0.21	0.01	6.76	2.28
	147	161	14	0.24	0.01	78.29	1.33
	388.3	400	11.7	0.2	0.01	41.9	0.7
	422	442	20	0.28	0.02	260.5	1.13
CHS19-020			1	NSI	1 ***-		
CHS19-022	37.35	58.85	21.5	0.63	0.05	18.62	3.13
	180.4	200.1	19.7	0.2	0.01	264.1	0.61
	246	275	29	0.3	0.01	535.9	1.52
	292.2	429.5	137.3	0.4	0.02	278	1.38
	496	514	18	0.24	0.01	245.44	0.57
CHS19-024	272	290	18	0.36	0.01	154.2	2.44
CHS19-025	0.4	24	23.6	0.77	0.02	263.44	2.23
0.1015 025	31	49.5	18.5	0.44	0.01	52.66	1.14
	57	115	58	0.29	0.01	308.03	0.76
	131	141	10	0.21	0.01	43.4	0.66
CHS19-027	121	173.8	52.8	0.33	0.02	246.22	2.27
C11313 "UZI	316.95	424	107.05	0.3	0.02	147.71	1.1
	430	476	46	0.3	0.01	316.7	0.57
	485.9	512	26.1	0.27	0.01	248.28	0.57
CHS19-028				†			
CH319-020	23	52	29	1.38	0.12	2.67	6.12
	94.25	100 135	5.75	0.4	0.02	464.24	3.56 0.7
	114				0.01	162.96	-
	141	159.6	18.6	0.26	0.01	210.52	1.1
	180	190	10	0.23	0.01	57.2	0.67
	196	206	10	0.21	0.01	88.6	0.49
	212	241	29	0.25	0.01	69.88	0.77
	247	256	9	0.22	0.01	111.56	0.68
	268	274	6	0.13	0.01	24	0.34
	328	344	16	0.15	0.01	39.38	0.6
CHS19-033	0	18	18	0.33	0.01	29.98	0.86
	41	55	14	0.7	0.03	66.03	3.38
	72.2	77.35	5.15	0.9	0.06	985.2	12.02
	128.2	207.1	78.9	0.31	0.01	202.4	0.89
	235.4	240	4.6	0.19	0.01	44.78	0.61
	258	300	42	0.31	0.01	189.73	1
	344	356	12	0.31	0.01	88	0.84
	364	398	34	0.27	0.01	165.71	0.62
CHS19-034		T	•	NSI	•	T	
CHS19-036	60	70	10	0.98	0.04	4.8	4.64
	163.55	169	5.45	0.22	0.01	13.25	0.7
	191	197.5	6.5	0.18	0.01	73.28	0.52
	210	254	44	0.98	0.07	2.68	4.38
	264.4	286	21.6	1.29	0.06	7.99	5.48
	355.75	377	21.25	0.21	0.01	222.84	0.97
	399	407	8	0.21	0.01	200.25	1.13
CHS19-037	6.2	61.9	55.7	0.7	0.04	9.85	4.31
	103	110	7	0.06	0.01	535.35	0.25
	188	229	41	0.34	0.01	214.59	0.77
	317.8	348.25	30.45	0.36	0.01	300.63	0.73
	423	444.8	21.8	0.27	0.01	110.67	0.63
CHS19-039	118.95	125	6.05	0.38	0.02	4.99	1.27
	144.3	169	24.7	0.29	0.01	19.62	1.12
	232.1	254	21.9	0.81	0.05	191.08	3.76
	293.95	300	6.05	0.44	0.02	389.13	1.64
	366.7	397	30.3	0.38	0.01	261.77	1.27
	410	436	26	0.32	0.01	136.18	1.05
	456	477	21	0.24	0.01	109.1	1.14
				1	0.0.		

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)
CHS19-040	26.75	42.3	15.55	1.02	0.04	36.96	3.21
	55.8	117	61.2	1.26	0.04	2.43	3.67
	212	230	18	0.78	0.04	16.37	2.2
CHS19-041	0.9	176	175.1	0.54	0.02	453.07	2.03
	196	216	20	0.33	0.02	588	1.51
	238	277.95	39.95	0.24	0.01	97.62	0.41
	299	438.55	139.55	0.24	0.01	198.23	0.65
CHS19-042			•	NSI	•	•	_
CHS19-043	0	198.5	198.5	0.42	0.01	326.16	1.25
	275.2	426	150.8	0.28	0.01	195.57	0.79
	448	464	16	0.23	0.01	257.25	0.49
CHS19-045	39	147	108	1	0.03	4.09	3.35
	162	173	11	0.21	0.01	39.75	0.53
	184.5	192	7.5	0.38	0.01	1.24	1.35
CHS19-046	22	43	21	0.55	0.04	4.03	2.15
	60	74	14	0.59	0.02	3.26	1.74
	84	93	9	0.56	0.02	173.36	2.05
CHS19-048	12	36	24	0.37	0.02	8.83	1.76
CLICAD DA	41.2	72	30.8	0.4	0.03	7.05	1.84
CHS19-049	82	100.4	18.4	1.02	0.04	3	3.8
	301	314	13	0.32	0.00	13	1.0
	320	331	11	0.30	0.00	44	1.2
CHS19-050	4	120	116	0.67	0.02	309	1.7
	124	138	14	0.24	0.01	465	0.9
	140	162	22	0.23	0.01	135	0.9
	172	198	26	0.28	0.01	287	1.3
	206	222	16	0.23	0.01	282	0.7
	230	266	36	0.27	0.01	230	0.7
	308	324	16	0.23	0.01	176	0.7
	350	374	24	0.25	0.01	220	0.8
CHS19-051	7.8	17.3	9.5	0.20	0.00	6	0.4
	18.6	48.05	29.45	0.54	0.05	16	2.8
	74.2	87	12.8	0.27	0.03	4	1.3
	244	256	12	0.24	0.01	1542	1.3
	279	294	15	0.36	0.01	361	1.3
	310	377.55	67.55	0.30	0.00	432	0.7
	379	400	21	0.22	0.00	311	0.5
	435.1	448.85	13.75	0.26	0.01	210	0.9
CHS19-052	29	55.35	26.35	0.86	0.04	74	2.7
	62.5	94.05	31.55	1.44	0.05	2	5.2
	97.4	149	51.6	1.27	0.06	1	4.9
	155	165.1	10.1	0.56	0.01	4	1.5
CHS19-053	117.8	127	9.2	0.33	-0.01	3	1.0
	160.55	174	13.45	0.23	0.00	47	0.7
	188	208	20	0.73	0.02	28	2.4
	226	238.2	12.2	1.50	0.04	9	5.5
	270.7	297.3	26.6	0.70	0.02	15	2.5
	446	460	14	0.21	0.02	242	0.7
	472	498	26	0.29	0.01	326	0.7
	508	530	22	0.22	0.01	216	0.6
	548	558	10	0.28	0.01	247	0.8
CHS19-054	41	50	9	0.22	0.00	4	0.8
C11313-034	142	154	12	2.22	0.06	8	6.3
			ł			ł	
	217	225	8	0.38	0.02	21	1.0
CLICAC OFF	246.75	283	36.25	0.38	0.01	66	1.3
CHS19-055	0	21	21	0.31	0.01	69	1.4
	29	69.9	40.9	0.57	0.02	149	2.0

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)
	208.3	227	18.7	0.25	0.01	226	1.3
	229	255	26	0.24	0.01	352	0.6
	320	342.2	22.2	0.26	0.01	127	0.7
CHS19-056				NSI			
CHS19-057	18	38	20	0.25	0.01	6	0.8
СПЗТЭ-037	99.8	134.5	34.7	0.49	0.01	2	2.1
	198	207	9	0.29	0.02	2	0.8
	216.8	230	13.2	0.42	0.04	1	1.3
CHS19-058	22	62.4	40.4	1.53	0.04	44	4.8
CH319-030	65.5	131.1	65.6	3.19	0.10	4	10.7
	352	391.5	39.5	0.99	0.03	6	3.3
	494	504	10	0.22	0.03	164	0.6
CUC10 0F0	737	304	10		0.01	104	0.0
CHS19-059	10	10.7		NSI	0.05		
CHS19-060	19	42.7	23.7	1.12	0.05	3	4.4
	45.8	61.8	16	0.33	0.02	153	1.6
G11G1G GG1	282	294.85	12.85	0.34	0.01	201	0.9
CHS19-061	0	132	132	0.44	0.01	378	1.3
	136	166	30	0.23	0.01	149	0.6
	172	186	14	0.25	0.01	257	0.7
	196	216	20	0.30	0.01	741	1.5
	234	250	16	0.24	0.01	314	0.7
	295	303.1	8.1	0.27	0.01	304	0.7
G11G1G GGG	358	380	22	0.22	0.01	285	0.6
CHS19-062	59	82	23	0.29	0.02	6	1.0
	86	98.85	12.85	0.28	0.00	1	0.9
	104	180.7	76.7	1.23	0.04	3	4.5
	283	297	14	0.39	0.01	12	1.4
	301	317	16	0.23	0.01	114	0.7
GU 1010 000	412.35	424	11.65	0.26	0.00	164	0.9
CHS19-063	15	41	26	0.81	0.04	10	4.0
	44	61	17	0.35	0.02	25	1.5
	147	157	10	0.20	0.01	66	2.1
	164	182	18	0.24	0.00	199	1.0
	185	212.5	27.5	0.25	0.00	161	0.7
	232	265	33	0.64	0.01	78	1.7
	267	309	42	0.43	0.01	87	1.3
	377	396	19	0.42	0.01	95	0.9
CHS19-064				NSI			
CHS19-065	32.2	62.55	30.35	2.00	0.07	26	4.8
	134.4	143.85	9.45	0.44	0.01	470	2.2
	146.05	194.8	48.75	0.98	0.04	11	4.3
	276	284	8	0.23	0.00	131	1.0
	289.95	322	32.05	0.29	0.01	242	1.2
	326	337.3	11.3	0.25	0.01	249	1.0
CHS19-066	0	14.75	14.75	0.26	0.00	24	0.7
	55.1	66	10.9	0.30	0.01	245	0.7
	116	126	10	0.22	0.00	126	0.4
	132	158	26	0.26	0.00	331	0.9
	162	191	29	0.26	0.01	222	0.9
	232	248	16	0.23	0.00	283	0.7
	260	271.4	11.4	0.21	0.00	148	0.6
CHS19-068				NSI			
CHS19-069	131	143	12	0.70	0.02	9	2.5
	397	411.3	14.3	0.21	0.01	228	0.6
CHS19-070	0	10.2	10.2	0.25	0.01	21	0.8

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)
	28.65	45	16.35	0.30	0.01	11	0.9
	73	117	44	0.35	0.01	199	1.0
	121	147	26	0.25	0.01	96	0.7
	275	287	12	0.26	0.02	135	1.4
	335	343	8	0.38	0.03	118	4.4
	386.1	401.4	15.3	0.23	0.01	53	1.3
CHS19-071	142.1	161	18.9	0.50	0.02	4	1.8
C11313 071	178.3	238.1	59.8	1.56	0.06	79	6.1
	239.8	279	39.2	0.53	0.03	80	2.4
CHS19-072	233.0	273	33.2	1	0.03	00	2.7
	10.05		10.15	NSI		10	1.0
CHS19-077	18.85	37	18.15	0.40	0.02	13	1.2
	39	48.2	9.2	0.45	0.02	34	1.7
	349.9	365	15.1	2.89	0.10	46	8.1
CHS19-079				NSI			
CHS19-081	153.2	162	8.8	0.73	0.03	4	2.8
	171	208.2	37.2	1.34	0.05	2	4.9
	228	273	45	1.28	0.05	8	5.4
	279	295.7	16.7	2.09	0.07	4	8.8
	320	332	12	1.01	0.02	2	3.3
CHS19-084	48	59	11	0.27	0.01	403	1.2
	65.1	75	9.9	0.41	0.02	24	1.6
	85.6	94	8.4	0.21	0.00	8	1.0
	107.4	139.8	32.4	0.39	0.01	4	1.4
	155.8	179	23.2	1.47	0.04	1	6.1
	212	221	9	0.88	0.04	7	4.0
	235	257	22	0.77	0.04	4	3.4
	319	329	10	0.27	0.03	203	1.4
			16			1	+
	353	369	16	0.21	0.01	244	0.6
CHS19-085				NSI			
CHS19-089	68.5	151	82.5	1.68	0.07	16	6.0
	157	174.9	17.9	1.35	0.08	25	5.3
	177.85	227	49.15	4.84	0.20	5	18.2
	278	294.2	16.2	0.32	0.01	139	1.1
	316	333	17	0.24	0.01	303	1.0
CHS19-094	44	64.5	20.5	0.76	0.05	7	3.5
	69	106.8	37.8	0.42	0.02	129	2.5
	110.15	126.7	16.55	0.22	0.01	41	0.9
	169.45	189	19.55	0.33	0.01	199	0.9
	197	220.7	23.7	0.29	0.01	334	1.0
CHS19-095	53	83	30	1.09	0.05	19	3.3
	99.1	128	28.9	1.09	0.04	5	3.7
	135.2	150.4	15.2	0.35	0.01	21	1.0
CHS19-099	54.3	66	11.7	0.67	0.02	4	2.5
	78.5	114	35.5	1.01	0.04	15	3.4
	122	151.6	29.6	0.52	0.02	72	1.7
	219.75	249	29.25	0.68	0.04	32	2.8
	268.5	286	17.5	0.28	0.04	18	1.2
	288.7	310	21.3	0.28	0.01	465	1.2
	330		25.4	1	0.02	638	1.3
CHS19-100	37.9	355.4	1	0.31		5	
CU313-100		50	12.1	0.88	0.03	2	3.3
	56	126.6	70.6	2.50	0.08		9.3
	132	140.45	8.45	0.49	0.01	3	1.3
	189	199	10	0.20	0.00	30	0.4
CHS19-105	34	57	23	0.32	0.03	15	3.5
	61	88	27	0.99	0.04	4	4.1

Hole ID	From (m)	To (m)	Length (m)	Cu (%)	Au (g/t)	Mo ppm	Ag (g/t)
	92	115	23	0.33	0.01	17	1.7
	120.3	150.5	30.2	0.52	0.02	341	3.6
	226	247	21	0.74	0.04	423	4.5
	255	273	18	0.27	0.01	306	1.6
CHEX20-001	37	63	26	2.22	0.07	52	5.4
	72.6	113	40.4	1.08	0.03	4	4.4
	114.4	158.5	44.1	1.01	0.04	3	4.2
	169.1	180.6	11.5	0.31	0.01	235	1.1
	248	257.8	9.8	0.40	0.01	248	2.2
	268.6	294	25.4	0.39	0.01	284	1.6
CHEX20-002	20.1	39	18.9	0.30	0.01	11	0.6
	54	73	19	1.10	0.04	30	2.9
	126	162.85	36.85	1.55	0.07	2	6.2
	168	194	26	0.46	0.03	1	1.8
CHEX20-003	113.2	133.35	20.15	0.96	0.04	20	3.3
	172.55	183.1	10.55	0.49	0.02	122	1.5
	197	282.2	85.2	0.55	0.02	251	1.8
CHEX20-004	16	26	10	0.27	0.01	2	0.7
	37	48.4	11.4	0.63	0.03	17	2.3
CHEX20-005	44	64	20	0.97	0.03	29	3.3
	68	87	19	0.89	0.03	4	3.3
	155.4	172.7	17.3	1.77	0.03	3	6.5
	186.5	204.9	18.4	0.74	0.02	6	2.9
CHEX20-006				Pending Assays			
CHEX20-007	104.4	120.8	16.4	0.75	0.02	769	2.0
	164	178.75	14.75	0.41	0.01	748	2.9
	189	211.4	22.4	0.42	0.03	561	1.0
	220	231	11	0.21	0.01	34	0.6
	268.2	282	13.8	1.06	0.06	7	4.7
	291.8	314	22.2	0.73	0.04	3	2.9
	346	358	12	2.65	0.08	15	7.3
CHEX20-008	34.8	68	33.2	0.62	0.02	5	2.7
	78	97	19	2.07	0.10	61	7.4
	119	135.05	16.05	0.44	0.02	28	1.6
	221.4	278	56.6	1.47	0.07	314	5.2
	280	313.55	33.55	0.47	0.03	452	2.8
CHEX20-012	33	66	33	0.75	0.04	17	2.4
	87	119	32	0.57	0.02	4	2.3
	158	173	15	0.40	0.02	4	1.4
CHEX20-013				Pending Assays		1	
CHEX20-014				Pending Assays			
CHEX20-015				Pending Assays		1	
CHEX20-016				Pending Assays		1	
CHEX20-017				Pending Assays		1	
CHEX20-018				Pending Assays			
CHEX20-020				Pending Assays			
CHEX20-021				Pending Assays			

JORC 2012 TABLE 1 – SOKOROSHE II EXPLORATION ACTIVITIES

The following information provided in Table 1 complies with the 2012 JORC Code requirements specified by "Table-1 Section 1-3" of the Code.

Table 1 JORC 2012 Code Table 1 Assessment and Reporting Criteria for Sokoroshe II Exploration Activity

Criteria	Commentary							
Section 1 Sampling	 Techniques and Data							
Sampling techniques	 A combination of reverse circulation drilling (RC) and diamond drilling (DD) were completed in the Project area. 							
	 Mineralised zones within the drill core were identified based on combined parameters, including lithological and alteration logging, mineralogical logging and systematic spot pXRF readings. DD core was sampled nominally at 1m intervals within mineralised zones while unmineralised zones were sampled at to 2m - 5.3m intervals. Sampling was carried out by longitudinally cutting PQ and HQ drill core using an Almonte automatic diamond saw and sampling half-core, with half-core retained for future reference. PQ drill core was quartered and sampled. Three-quarters of the core was retained for future reference. 							
	 RC drill cuttings were collected in 1m bulk samples from a rig mounted cyclone. Lithological and mineralogical logging, supported by systematic spot pXRF readings, were used to identify mineralised and unmineralised zones in the RC chips. Samples from mineralized zones were riffle split every 1m to obtain a representative (~2.5kg) sample. Samples from unmineralised zones were riffle split and composited to 2m intervals. Wet samples were dried in sun and ambient air before splitting and compositing. Overall, 81% of the samples were less than 2m, with mineralised samples taken at nominal 1m intervals. 							
	 Overall, 61% of the samples were less than 2ff, with finite alised samples taken at normal finite vals. Samples were crushed, split and pulverised (>85% passing 75 µm) at an onsite ALS laboratory at the MMG core yard facility in Lubumbashi. 100 grams of pulp material was sent to the SANAS accredited ALS Laboratories in Johannesburg. 							
	 The sample types, nature, quality and sample preparation techniques are considered appropriate for the nature of mineralisation within the Project (sediment hosted base metal mineralisation) by the Competent Person. 							
Drilling techniques	 Diamond drilling: PQ and HQ sizes, with triple tube to maximise recovery. At the end of each drilling run the core was marked with an orientation mark by using a REFLEX ACE tool. An orientation line was then drawn along the axis of the core if two consecutive orientations marks could be aligned by docking core pieces. 							
	 Reverse circulation drilling: A hammer bit was used for drilling a 5.25 inch (133mm) diameter hole. The cyclone was manually cleaned at the start of each shift, after any wet samples, and after each hole. Compressed air from the drilling machine was used to clean/blow out material from the RC rods, hoses, and cyclone after each rod. 							
Drill sample	Overall DD core recovery averaged 85% across the Project area.							
recovery	 Actual vs. recovered drilling lengths were captured by the driller and an onsite rig technician using a tape measure. Measured accuracy was down to 1cm. The core recoveries were calculated during the database exports. 							
	Sample recovery during diamond drilling was maximised using the following methods:							
	o Short drill runs (~50cm)							
	 Using drilling additives, muds and chemicals to improve broken ground conditions. 							
	 Using the triple tube methodology in the core barrel. 							
	o Reducing water pressure to prevent washout of friable material							
	Drilling rates varied depending on the actual and forecast ground conditions							
	 Core loss was recorded through the core and assigned to intersections where visible loss occurred. Cavities were noted. 							
	Bias due to core loss has not been determined.							
	 RC cuttings recovery was measured by weighing each 1m sample bag immediately following collection from the cyclone. 							
	Sample returns for RC drilling have been calculated at 72% .							
	Sample recovery during RC drilling was maximized using the following methods:							
	 Adjusting air pressures to the prevailing ground condition. 							

Criteria	Commentary
	 Using new hammer bits and replacing when showing signs of wear.
Logging	All drill samples (DD core, RC chips) were geologically logged using a GeoBank® Mobile interface and uploaded to a Geobank® database.
	 Qualitative logging includes lithology, mineralisation type, oxidation type, weathering type, colour and alteration types. Quantitative logging includes mineralisation mineral percentage, alteration mineral percentage and in the case of core, RQD and structural data have been recorded.
	All the core and chip samples were photographed both wet and dry.
	100% of core and chips have been logged with the above information.
Sub-sampling techniques and	 DD core was split in half longitudinally (HQ size) or quartered (PQ size) using an Almonte automatic diamond saw.
sample preparation	 Sample lengths were cut as close to nominal 1m intervals as possible while also respecting geological contacts. Samples were generally ~2.5kg in weight.
	• RC samples were collected from a cyclone every meter by a trained driller's assistant. If the sample was dry the sample was passed through a riffle splitter and a ~2.5kg split was collected into a pre-numbered clear plastic bag. Residual material was sampled and sieved for collection into chip trays for logging and the remainder returned to the larger poly-weave bag (bulk reject). The splitter was cleaned using compressed air or a clean brush and tapped using a rubber mallet. If the sample was wet, the sample was sun and air dried before being split according to the above procedure.
	 For RC method, field duplicates were inserted at a rate of approximately 5% to ensure sampling precision was measured.
	 Samples from individual drillholes were sent in a single dispatch to the onsite ALS laboratory at the MMG core yard facility in Lubumbashi.
	 Samples were received, recorded on the sample sheet, weighed, and dried at 120°C for 4 to 8 hours (or more) depending on dampness at the sample preparation laboratory.
	 Samples were crushed and homogenised in a jaw crusher to >70% passing 2mm. The jaw crusher was cleaned with a barren quartz blank after every crushed sample.
	The sample size was reduced to 1000g in a riffle splitter and pulverised in an LM2 pulveriser to >85% passing 75 micron. QC grind checks were carried out using wet sieving at 75 micron on 1 in 10 samples. 100 person for the probability probability of ALC and the
	100 grams of pulp material were sent to the SANAS accredited ALS Laboratories in Johannesburg. Cruck and pulp displicates were submitted for OAOC purposes.
	 Crush and pulp duplicates were submitted for QAQC purposes. Certified reference material (high, medium, and low copper grades) were also inserted and submitted to
	ALS for analysis at a rate of 3 per 30 samples. • The sample size is appropriate for the grain size and distribution of the minerals of interest.
Quality of assay	All samples were sent to ALS Chemex Laboratory in Johannesburg
data and laboratory	Samples were analysed using a 4-acid digest with ICP MS finish. 48 elements were analysed in total.
tests	 Acid soluble copper assays were only performed when the total copper assay was greater than 1,000 ppm.
	 ~15% QAQC samples were incorporated, including blanks, duplicates (field, crush, and pulp) and certified reference material per sample analysis batch.
	 QAQC data has been interrogated with no significant biases or precision issues.
	 No geophysical tools, spectrometers, or portable XRF instruments have been used for estimation purposes.
Verification of	Significant intersections have been reviewed by competent MMG employees.
sampling and	No twin drilling was completed.
assaying	Data are stored in a SQL database with a Geobank® interface.
	No adjustments to assay data were made.
Location of data points	 Planned collar positions for both diamond drilling and RC drilling were located using handheld GPS devices to ±5m accuracy.
	 Post drilling, actual collar positions were surveyed using DGPS (Geomax Zenith 25 Pro and Topcon Hiper II) and are considered to be of high accuracy.
	Grid system is in WGS84/UTM35S
	Topographic control was by a detailed aerial drone survey.
	 The TN14 GYROCOMPASS™ was used to align the drill rig to the correct azimuth and dip angles.

Criteria	Commentary
	Downhole surveys were done using the REFLEX EZ-TRAC survey instrument. Downhole surveys were not carried out on RC drillholes. Azimuth and dip were extrapolated from measurements taken from the surface using compass and clinometer.
	 The surface Digital Terrain Model (DTM) for the Project was generated from the Airborne Geophysics XCalibur surveys carried out in 2015. The dataset was found to be adequate with topographic control to ±3m accuracy. High resolution DEM for the Sokoroshe II pit area was surveyed with LiDAR technology in 2017.
Data spacing and distribution	 Drill hole data are spaced for the main (drillout) area on approximately 40m (N-S oriented) drill sections with holes on section spaced 50 to 70m. Several drill sections outside the main area are 50 to 100m spaced with 50m spacing between drillholes. Three section lines at Sokoroshe II Southeast area are oriented NE-SW.
	2m, 3m or 4m composites were taken in zones of no visual mineralisation.
	Nominal 1m samples were taken in zones of mineralisation.
	No other sample compositing has occurred.
Orientation of data in relation to geological structure	DD and RC drillholes were predominantly drilled with dips of between 50° and 60° to intersect generally steeply dipping mineralisation. Drilling azimuths were as close as practical to orthogonal to the mineralised trend.
	 No sampling bias is thought to have been introduced due to the relationship of drilling orientation to key mineralised structures.
Sample security	 Samples were transported from the field and delivered to the sample processing facility in Lubumbashi for cutting and preparation. A single cab pick-up was used for the transport. Polyethylene foam, tarpaulins, and cargo nets were used to secure the load and to avoid possible shifting of core during transport.
	 RC chip sampling was conducted in the field. Chip samples were packed in a labelled plastic bag along with a labelled plastic ID tag.
	The plastic bag was tied with cable ties to secure the sample and to prevent contamination.
	 A set of 15 plastic sample bags were packed into labelled poly-weave bags, ready to be shipped from the field to the sample preparation laboratory in Lubumbashi.
	 Field packing documents and sample sheets were prepared and sent together with the core trays and poly-weave bags to the sample preparation laboratory in Lubumbashi.
	 After sample preparation, bar-coded envelopes of 100-200g of pulp for each sample were inserted into boxes of ~35 envelopes each, labelled with dispatch ID and laboratory destination to be sent by DHL courier to ALS Chemex in Johannesburg.
	 Two sets of duplicate pulps of 100-200g were inserted into labelled boxes of ~35 envelopes each to be stored on site in storage containers.
	 The shipment of pulps from Lubumbashi to ALS laboratories was done using DHL Courier services with waybill number for tracking.
	 The Lubumbashi sample preparation laboratory utilizes the ALS-Chemex LIM System installed at Kinsevere mine site, generating a unique lab workorder for each batch sample in the analytical chain.
Audit and reviews	No external audits or reviews of sampling techniques and data have been conducted.
Section 2 Reporting	of Exploration Results
Mineral tenement and land tenure status	 The Sokoroshe II project consists of one mining tenement or Permis d'Eploitation, PE538, with an area of 6 cadastral units (about 5.1 Km2). The mineral rights of PE 538 are held by La Générale des Carrierés et des Mines (Gécamines), the DRC state-owned mining company. MMG rights to the tenement are granted under the terms of the Mutoshi Swap Framework Agreement. MMG declared an Inferred Mineral Resource on 17 March 2017 to retain the lease holding and transition it from a status of Exploration Period to Development Period under clause 6.2. of the agreement. According to the agreement, the "Development Period" shall start on the date on which the first Development Work Program has been agreed between Gecamines and MMG Kinsevere (the Development Period start date). The Development Period shall have a duration of 5 calendar years (1825 days) from the Development Period start date. MMG Kinsevere must establish Proved Ore Reserves to achieve a viable economic exploitation of the deposits contained in the retained permits viz. PE538 Sokoroshe 2. MMG Kinsevere submitted its first Development Work Program to Gecamines for approval on 4 July 2017. Pursuant to clause 6.2.4(i), Gecamines was provided with 30 days to express its
	comments or disagreement on the first Development Work Program, which will then be deemed accepted in the absence of receipt of comments or disagreement of Gecamines within this period. MMG

Criteria	Commentary
	Kinsevere did not receive any comments or disagreement from Gecamines within the 30 day period (or any following period). Accordingly, the first Development Work Program was deemed accepted by Gecamines as from 4 August 2017 and the Development Period Start Date was also 4 August 2017.
Exploration done by other parties	 Soil sampling on 120x120m grid and geology mapping were done in 1976 by Gecamines. No data available for this work.
	 Ruashi Holdings/Metorex carried out unknown exploration work in 2005 at Sokoroshe II. No data available for this work.
Geology	 Sediment-hosted style copper deposit hosted in the lower part of the Neoproterozoic Katanga Supergroup in the Roan stratigraphic group.
	 Copper mineralisation occurs mainly as veins and disseminations in a carbonaceous, massive to laminated dolomite.
	 Primary copper mineralogy comprises chalcopyrite, bornite, and chalcocite in decreasing abundance. Oxide copper mineralogy comprises primarily malachite with trace amounts of chrysocolla.
Drill hole information	Refer to the Sokoroshe II Technical Report for a complete listing of all drill hole information on the Sokoroshe II Project.
Data aggregation methods	 Significant copper intersections were reported at 0.5% Total Cu lower cut-off at a minimum width of 3m with up to 3m internal dilution permitted. Copper equivalents were not used in the reporting of exploration results.
	 Significant cobalt intersections were reported at 0.2% Total Co lower cut-off at a minimum width of 3m with up to 3m internal dilution permitted.
Relationship between mineralisation width and intercept lengths	All results are reported as estimated true widths of the modeled mineralised zones.
Diagrams	Refer to maps and cross sections in the text of this report.
Balanced reporting	The table below shows the complete list of significant copper intercepts received from the Sokoroshe II (SOK2) 2019 drilling campaign, based on copper-grade-times-thickness measurement. All significant intercepts are reported based on a 0.5% Total Cu lower cut-off at a minimum drilled width of 3m with up to 3m internal dilution permitted. Hole locations are shown on the maps in the preceding section. NSA = No Significant Assays (<0.5% Cu or <3m drilled interval length).

riteria	Comment	tary									
	Prospect	Hole_ID	E	N	RL	ЕОН	Туре	Dip	Azimuth	Depth_From	Cu_Intercept_1
	SOK2	SOK2DD012	536916	8746217	1366	124.0	DD	-63.0	356.3	31.5	4.8m @ 0.72 %
	SOK2	SOK2DD012	536916	8746217	1366	124.0	DD	-63.0	356.3	49.0	8.4m @ 0.74 %
	SOK2	SOK2DD012	536916	8746217	1366	124.0	DD	-63.0	356.3	63.5	25.2m @ 2.50 %
	SOK2	SOK2DD014	537224	8746108	1364	131.4	DD	-55.5	358.2	76.0	4.4m @ 1.60 %
	SOK2	SOK2DD015	537322	8746116	1364	107.3	DD	-55.0	0.3	13.0	3.7m @ 1.36 %
	SOK2	SOK2DD015	537322	8746116	1364	107.3	DD	-55.0	0.3	30.0	31.5m @ 1.87 %
	SOK2	SOK2DD015	537322	8746116	1364	107.3	DD	-55.0	0.3	72.0	3.7m @ 0.54 %
	SOK2	SOK2DD015	537322	8746116	1364	107.3	DD	-55.0	0.3	85.0	3.0m @ 0.62 %
	SOK2	SOK2DD016	537324	8746074	1360	130.7	DD	-54.9	359.7	68.0	25.3m @ 1.98 9
	SOK2	SOK2DD016	537324	8746074	1360	130.7	DD	-54.9	359.7	109.0	11.9m @ 1.06 9
	SOK2	SOK2DD017	537225	8746181	1375	126.8	DD	-49.8	359.8	75.0	9.2m @ 0.57 %
	SOK2	SOK2DD017	537225	8746181	1375	126.8	DD	-49.8	359.8	89.3	3.4m @ 4.09 %
	SOK2	SOK2DD018	537327	8746160	1368	130.3	DD	-50.1	359.8	85.0	3.7m @ 0.94 %
	SOK2	SOK2DD019	537362	8746161	1366	130.0	DD	-50.4	0.7	92.0	3.6m @ 1.14 %
	SOK2	SOK2DD020	537177	8746182	1376	130.0	DD	-49.8	359.6	75.4	4.6m @ 1.17 %
	SOK2	SOK2DD020	537177	8746182	1376	130.0	DD	-49.8	359.6	83.6	8.0m @ 1.11 %
	SOK2	SOK2DD021	537226	8746070	1360	140.0	DD	-56.1	1.9	129.9	7.8m @ 1.24 %
	SOK2	SOK2DD022	537272	8746069	1360	132.4	DD	-54.8	359.8	92.0	17.9m @ 1.44 9
	SOK2	SOK2DD022	537272	8746069	1360	132.4	DD	-54.8	359.8	122.0	7.8m @ 1.72 %
	SOK2	SOK2DD023	537373	8746117	1363	120.0	DD	-48.7	359.3	48.0	16.2m @ 2.57 9
	SOK2	SOK2RC065	537123	8746238	1375	85.0	RC	-55.0	357.8	46.0	7.0m @ 0.85 %
	SOK2	SOK2RC066	537171	8746212	1378	100.0	RC	-50.0	357.8	64.0	4.6m @ 0.75 %
	SOK2	SOK2RC067	537224	8746208	1377	95.0	RC	-50.0	357.8	63.0	4.6m @ 3.58 %
	SOK2	SOK2RC068	537324	8746199	1378	100.0	RC	-50.0	357.8	54.0	17.4m @ 0.78 9
	SOK2	SOK2RC069	537176	8746241	1377	65.0	RC	-50.0	357.8	35.0	12.8m @ 0.57 9
	SOK2	SOK2RC070	537222	8746238	1377	60.0	RC	-55.0	357.8	37.0	14.0m @ 3.31 9
	SOK2	SOK2RC071	537383	8746201	1368	84.0	RC	-50.0	357.8	-	NSA
	SOK2	SOK2RC072	537122	8746261	1375	30.0	RC	-55.0	357.8	-	NSA

• The table below shows the complete list of significant **cobalt** intercepts received from the Sokoroshe II (SOK2) 2019 drilling campaign, based on cobalt-grade-times-thickness measurement. All significant intercepts are reported based on a 0.2% Total Co lower cut-off at a minimum drilled width of 3m with up to 3m internal dilution permitted. Hole locations are shown on the maps in the preceding section. NSA = No Significant Assays (<0.2% Co or <3m drilled interval length).

	_						_			
Prospect	Hole_ID	E	N	RL	EOH	Type	Dip	Azimuth	DH_From	Co_intercept_TT
SOK2	SOK2DD012	536916	8746217	1366	124.0	DD	-63.0	356.3	80.9	4.9m @ 1.05 % Co
SOK2	SOK2DD014	537224	8746108	1364	131.4	DD	-55.5	358.2	-	NSA
SOK2	SOK2DD015	537322	8746116	1364	107.3	DD	-55.0	0.3	30.0	43.3m @ 1.09 % Co
SOK2	SOK2DD016	537324	8746074	1360	130.7	DD	-54.9	359.7	60.0	30.4m @ 0.85 % Co
SOK2	SOK2DD016	537324	8746074	1360	130.7	DD	-54.9	359.7	109.0	20.0m @ 0.74 % Co
SOK2	SOK2DD017	537225	8746181	1375	126.8	DD	-49.8	359.8	-	NSA
SOK2	SOK2DD018	537327	8746160	1368	130.3	DD	-50.1	359.8	-	NSA
SOK2	SOK2DD019	537362	8746161	1366	130.0	DD	-50.4	0.7	-	NSA
SOK2	SOK2DD020	537177	8746182	1376	130.0	DD	-49.8	359.6	-	NSA
SOK2	SOK2DD021	537226	8746070	1360	140.0	DD	-56.1	1.9	129.9	2.6m @ 0.58 % Co
SOK2	SOK2DD022	537272	8746069	1360	132.4	DD	-54.8	359.8	97.0	32.6m @ 0.70 % Co
SOK2	SOK2DD023	537373	8746117	1363	120.0	DD	-48.7	359.3	50.0	18.2m @ 1.91 % Co
SOK2	SOK2RC065	537123	8746238	1375	85.0	RC	-55.0	357.8	-	NSA
SOK2	SOK2RC066	537171	8746212	1378	100.0	RC	-50.0	357.8	-	NSA
SOK2	SOK2RC067	537224	8746208	1377	95.0	RC	-50.0	357.8	-	NSA
SOK2	SOK2RC068	537324	8746199	1378	100.0	RC	-50.0	357.8	-	NSA
SOK2	SOK2RC069	537176	8746241	1377	65.0	RC	-50.0	357.8	-	NSA
SOK2	SOK2RC070	537222	8746238	1377	60.0	RC	-55.0	357.8	-	NSA
SOK2	SOK2RC071	537383	8746201	1368	84.0	RC	-50.0	357.8	-	NSA
SOK2	SOK2RC072	537122	8746261	1375	30.0	RC	-55.0	357.8	-	NSA

Other substantive exploration data

- Airborne Geophysics TEMPEST survey
- Airborne EM, magnetics, and radiometric were flown at the end of 2013.
- Geological mapping was conducted in 2014. Mapping results indicated lithologies from the Roan stratigraphic unit, the main host rock to the mineralisation. Younger lithologies were also noted from the Nguba and Kundelungu Formations.
- Airborne Geophysics Xcalibur survey, flown in 2015

Criteria	Commentary
	Surface geochemistry: Termite mound sampling on a 100m x 100m grid was completed in 2014, which effectively identified copper anomalous zones within the tenement.
Further work	Further activities are planned for the 2020 season:
	 Geotechnical and geohydrological drilling.
	 Detailed mining and investment studies.
	 Update of the Environmental and Social Impact Statement.

JORC 2012 TABLE 1 – NAMBULWA EXPLORATION ACTIVITIES

The following information provided in Table 1 complies with the 2012 JORC Code requirements specified by "Table-1 Section 1-3" of the Code.

Table 1 JORC 2012 Code Table 1 Assessment and Reporting Criteria for Nambulwa Exploration Activity

Criteria	Commentary
Section 1 Samp	ling Techniques and Data
Sampling techniques	 A combination of reverse circulation drilling (RC), diamond drilling (DD), and air core drilling (AC) were completed in the Project area. Mineralised zones within the drill core were identified based on combined parameters, including lithological and alteration logging, mineralogical logging and systematic spot pXRF readings. DD core was sampled nominally at 1m intervals within mineralised zones while unmineralised zones were sampled at up to 2-4m intervals. Sampling was carried out by longitudinally cutting PQ and HQ drill core using an Almonte automatic diamond saw and sampling half-core, with half-core retained for future reference. PQ drill core was quartered and sampled. Three-quarters of the core was retained for future reference. RC drill cuttings were collected in 1m bulk samples from a rig mounted cyclone. Lithological and mineralogical logging, supported by systematic spot pXRF readings, were used to identify mineralised and unmineralised zones in the RC chips. Samples from mineralized zones were riffle split every 1m to obtain a representative (~2.5kg) sample. Samples from unmineralised zones were riffle split and composited to 2m or occasionally 4m intervals. Wet samples were dried in ambient air before splitting and compositing.
	 AC drill cuttings were collected in 1m bulk samples from a rig mounted cyclone. Samples from zones of mineralisation were riffle split to obtain a representative (~2.5kg sample). Samples from visually unmineralised, lithologically similar zones were riffle split and composited to 3m sample intervals (~2.5kg weight). Wet samples were dried in ambient air before splitting and compositing. Overall, 54% of the samples were less than 2m, with mineralised samples taken at nominal 1m intervals. Samples were crushed, split and pulverised (>85% passing 75 µm) at an onsite ALS laboratory at the MMG core yard facility in Lubumbashi. 100 grams of pulp material was sent to the SANAS accredited ALS Laboratories in Johannesburg. The sample types, nature, quality and sample preparation techniques are considered appropriate for the nature of mineralisation within the Project (sediment hosted base metal mineralisation) by the Competent Person.
Drilling techniques	 Diamond drilling: PQ and HQ sizes, with triple tube to maximise recovery. At the end of each drilling run the core was marked with an orientation mark by using a REFLEX ACE tool. An orientation line was then drawn along the axis of the core if two consecutive orientations marks could be aligned by docking core pieces. Aircore drilling: A blade bit was used for drilling a 3.23 inch (82mm) hole. The cyclone was manually cleaned at the start of each shift, after any wet samples, and after each hole. Compressed air from the drilling machine was used to clean/blow out material from the AC rods, hoses, and cyclone after each rod. Reverse circulation drilling: A hammer bit was used for drilling a 5.25 inch (133mm) diameter hole. The cyclone was manually cleaned at the start of each shift, after any wet samples, and after each hole.
Drill sample recovery	Compressed air from the drilling machine was used to clean/blow out material from the RC rods, hoses, and cyclone after each rod. • Overall DD core recovery averaged 83% across the Project area. As expected, the recovery dropped in unconsolidated/highly weathered ground. Below 50m, core recovery averaged 85%, and below 100m, core recovery averaged 89%.

Criteria	Commentary
	 Actual vs. recovered drilling lengths were captured by the driller and an onsite rig technician using a tape measure. Measured accuracy was down to 1cm. The core recoveries were calculated during the database exports.
	 Sample recovery during diamond drilling was maximised using the following methods: Short drill runs (~50cm)
	 Using the triple tube methodology in the core barrel. Reducing water pressure to prevent washout of friable material
	Drilling rates varied depending on the actual and forecast ground conditions
	Core loss was recorded through the core and assigned to intersections where visible loss occurred. Cavities were noted.
	Bias due to core loss has not been determined.
	 RC and AC cuttings recovery was measured by weighing each 1m sample bag immediately following collection from the cyclone.
	Sample returns for RC and AC drilling have been calculated at 62% and 63% respectively.
	Sample recovery during RC drilling was maximized using the following methods:
	 Adjusting air pressures to the prevailing ground condition.
	 Using new hammer bits and replacing when showing signs of wear.
Logging	All drill samples (DD core, RC chips and AC chips) were geologically logged using a GeoBank® Mobile interface and uploaded to a Geobank® database.
	 Qualitative logging includes lithology, mineralisation type, oxidation type, weathering type, colour and alteration types. Quantitative logging includes mineralisation mineral percentage, alteration mineral percentage and in the case of core, RQD and structural data have been recorded.
	All the core and chip samples were photographed both wet and dry.
	100% of core and chips have been logged with the above information.
Sub-sampling	DD core was split in half longitudinally (HQ size) or quartered (PQ size) using an Almonte automatic
techniques and	diamond saw.
sample preparation	 Sample lengths were cut as close to nominal 1m intervals as possible while also respecting geological contacts. Samples were generally ~2.5kg in weight.
	 RC and AC samples were collected from a cyclone every meter by a trained driller's assistant. If the sample was dry the sample was passed through a riffle splitter and a ~2.5kg split was collected into a pre- numbered clear plastic bag. Residual material was sampled and sieved for collection into chip trays for logging and the remainder returned to the larger poly-weave bag (bulk reject). The splitter was cleaned using compressed air or a clean brush and tapped using a rubber mallet. If the sample was wet, the sample was sun and air dried before being split according to the above procedure.
	 For RC and AC methods, field duplicates were inserted at a rate of approximately 5% to ensure sampling precision was measured.
	 Samples from individual drillholes were sent in a single dispatch to the onsite ALS laboratory at the MMG core yard facility in Lubumbashi.
	 Samples were received, recorded on the sample sheet, weighed, and dried at 120°C for 4 to 8 hours (or more) depending on dampness at the sample preparation laboratory.
	 Samples were crushed and homogenised in a jaw crusher to >70% passing 2mm. The jaw crusher was cleaned with a barren quartz blank after every crushed sample.
	 The sample size was reduced to 1000g in a riffle splitter and pulverised in an LM2 pulveriser to >85% passing 75 micron. QC grind checks were carried out using wet sieving at 75 micron on 1 in 10 samples.
	100 grams of pulp material were sent to the SANAS accredited ALS Laboratories in Johannesburg.
	Crush and pulp duplicates were submitted for QAQC purposes.
	 Certified reference material (high, medium, and low copper grades) were also inserted and submitted to ALS for analysis at a rate of 3 per 30 samples.
	The sample size is appropriate for the grain size and distribution of the minerals of interest.
Quality of assay	All samples were sent to ALS Chemex Laboratory in Johannesburg
data and	Samples were analysed using a 4-acid digest with ICP MS finish. 48 elements were analysed in total.
laboratory tests	Acid soluble copper assays were only performed when the total copper assay was greater than 1,000 ppm.

Criteria	Commentary
	 ~15% QAQC samples were incorporated, including blanks, duplicates (field, crush, and pulp) and certified reference material per sample analysis batch.
	 QAQC data has been interrogated with no significant biases or precision issues.
	No geophysical tools, spectrometers, or portable XRF instruments have been used for estimation purposes.
Verification of	Significant intersections have been reviewed by competent MMG employees.
sampling and	No twin drilling was completed.
assaying	Data are stored in a SQL database with a Geobank® interface.
	No adjustments to assay data were made.
Location of data points	 Planned collar positions for both diamond drilling and RC drilling were located using handheld GPS devices to ±5m accuracy.
	 Post drilling, actual collar positions were surveyed using DGPS (Geomax Zenith 25 Pro and Topcon Hiper II) and are considered to be of high accuracy.
	Grid system is in WGS84/UTM35S
	Topographic control was by a detailed aerial drone survey.
	• The TN14 GYROCOMPASS™ was used to align the drill rig to the correct azimuth and dip angles.
	 Downhole surveys were done using the REFLEX EZ-TRAC survey instrument. Downhole surveys were not carried out on RC & AC drillholes.
Data spacing and distribution	 Drill spacing is variable between prospects. Average drill hole data are spaced at ~50 to 100m between drill sections. Holes on sections are spaced at ~25-50m apart.
	2m or 4m composites were taken in zones of no visual mineralisation (3m composites for AC drilling)
	Nominal 1m samples were taken in zones of mineralisation.
	No other sample compositing has occurred.
Orientation of data in relation to geological	 DD and RC drillholes were predominantly drilled with dips of between 45° and 60° to intersect generally steeply dipping mineralisation. Drilling azimuths were as close as practical to orthogonal to the mineralised trend. The AC drillholes were drilled vertically.
structure	In the view of the Competent Person, no bias has been introduced by the drilling direction.
Sample security	 Samples were transported from the field and delivered to the sample processing facility in Lubumbashi for cutting and preparation. A single cab pick-up was used for the transport. Polyethylene foam, tarpaulins, and cargo nets were used to secure the load and to avoid possible shifting of core during transport. RC chip sampling was conducted in the field. Chip samples were packed in a labelled plastic bag along
	with a labelled plastic ID tag.
	The plastic bag was tied with cable ties to secure the sample and to prevent contamination.
	 A set of 15 plastic sample bags were packed into labelled poly-weave bags, ready to be shipped from the field to the sample preparation laboratory in Lubumbashi.
	 Field packing documents and sample sheets were prepared and sent together with the core trays and poly- weave bags to the sample preparation laboratory in Lubumbashi.
	 After sample preparation, bar-coded envelopes of 100-200g of pulp for each sample were inserted into boxes of ~35 envelopes each, labelled with dispatch ID and laboratory destination to be sent by DHL courier to ALS Chemex in Johannesburg.
	 Two sets of duplicate pulps of 100-200g were inserted into labelled boxes of ~35 envelopes each to be stored on site in storage containers.
	 The shipment of pulps from Lubumbashi to ALS laboratories was done using DHL Courier services with waybill number for tracking.
	The Lubumbashi sample preparation laboratory utilizes the ALS-Chemex LIM System installed at Kinsevere mine site, generating a unique lab workorder for each batch sample in the analytical chain.
Audit and reviews	No external audits or reviews of sampling techniques and data have been conducted.
Section 2 Reporting	g of Exploration Results
Mineral tenement and land tenure status	The Nambulwa Project is located within lease PE539 (100% Gecamines) in the DRC. The lease was acquired by MMG as part of the Kinsevere Amodiation agreement with Gecamines. The tenement is valid through to April 3, 2024.

Criteria	Comment	tary										
Exploration done by other parties				ored the Nam y at Nambulv		ject d	uring	the 1	920s. UN	1HK condu	cted trenching,	
		amines explo limited drillir			ct during	the 19	90s. V	Vork	complete	ed included	I mapping, pitting,	
	 Anvil Mining explored the Nambulwa Project between September and December 2007 and was the first company to effectively define a resource. Anvil's initial phase of exploration included geological mapping, termite mound sampling, AC drilling (11,830m), RC drilling (6,268m), and DD drilling (668m) focussed on PE539 and the surrounding tenements. An unclassified resource of 1.1Mt of ore @ 3.3% Cu or 35,000 t of copper metal was estimated for Nambulwa Main. 											
Geology	• Strat	iform sedime	entary host	ed copper and	d cobalt.							
	Mineralisation is hosted by the Neoproterozoic Katanga Supergroup within the R2 (Mines Series), R3 (Kansuki Fm), and R4 (Mwashya Fm) stratigraphy.											
	 Copper mineralisation is both lithologically and structurally controlled and occurs mainly as veins and disseminations in dolomitic units, carbonaceous shale, and massive to laminated dolomite. 											
	black som	k shale unit. (etimes assoc	Oxide copp iated with e	the dolomition or mineralogy elevated Co manager deper levels of	includes ineralisat	malac ion. Su	hite a	nd o	ther black	c-oxides ar		
Drill hole information		r to the Nam Ibulwa Projed		inical Report 1	for a com	plete I	isting	of all	drill hole	e informati	on on the	
Data aggregation methods		• Significant intersections were reported at 0.5% Total Cu lower cut-off at a minimum width of 3m with up to 3m internal dilution permitted. Copper equivalents were not used in the reporting of exploration results.										
Relationship between mineralisation width and ntercept lengths	• All re	esults are rep	orted as es	timated true v	widths of	the m	odele	d mir	neralised	zones.		
Diagrams	Refe	r to maps an	d cross sec	tions in the te	xt of this	report						
Balanced reporting	base 0.5% Hole	ed on copper Total Cu lov	-grade-time ver cut-off a e shown on	es-thickness n at a minimum	neasurem drilled w	ent. A idth o	ll sign f 3m v	ificar vith u	nt interce _l ip to 3m	ots are rep internal dil	ling campaign, orted based on a ution permitted. ssays (<0.5% Cu o	
	Prospect		Е	N	RL			_	Azimuth		Cu_Intercept_TT	
	NAM	NAMRC015 NAMRC020	557014	8768210	1241	120	RC	-50	42.8	53.0	26.7m @ 3.93 % Cu 25.5m @ 2.59 % Cu	
	NAM DZ	NAMRC020	556847 555882	8768319 8768040	1242 1226	80 40	RC RC	-50 -51	42.8 261.8	25.0 9.0	26.2m @ 3.37 % Cu	
	NAM	NAMRC022	556879	8768359	1263	85	RC	-52	220.8	18.0	30.0m @ 1.92 % Cu	
	DZ	NAMRC029	555904	8768043	1226	48	RC	-50	262.8	18.0	29.2m @ 2.78 % Cu	
	NAM	NAMRC019	556928	8768263	1240	198	RC	-50	42.8	106.0	77.2m @ 0.74 % Cu	
	NAM	NAMRC019	556928	8768263	1240	198	RC	-50	42.8	32.0	20.1m @ 3.14 % Cu	
	NAM	NAMRC051	557254	8767969	1266	55	RC	-55	127.8	18.0	26.8m @ 2.20 % Cu	
	NAM DZ	NAMRC025 NAMRC046	557204 555959	8767943 8767845	1256 1228	65 54	RC RC	-55 -45	122.8 251.8	24.0 44.0	19.1m @ 2.23 % Cu 7.9m @ 3.53 % Cu	
	NAM	NAMRC060	557185	8768006	1252	85	RC	-55	127.8	36.0	20.9m @ 1.58 % Cu	
	NAM	NAMRC026	557207	8767972	1256	75	RC	-55	122.8	20.0	20.0m @ 1.57 % Cu	
	NAM	NAMRC021	556762	8768388	1236	140	RC	-50	42.8	60.0	15.7m @ 1.69 % Cu	
	DZ	NAMRC043	555924	8767915	1230	65	RC	-50	71.8	46.0	18.4m @ 1.60 % Cu	
	DZ	NAMRC034	555869	8767951	1228	140	RC	-50	69.8	47.0	21.2m @ 1.02 % Cu	
	DZ	NAMRC037	555893	8767955	1228	80	RC	-50	69.8	22.0	27.8m @ 0.77 % Cu	
	NAM	NAMRC059	557207	8768003	1253	80	RC	-55	127.8	24.0	23.8m @ 1.21 % Cu	
	DZ	NAMRC028	555924	8768044 8768020	1225	65 75	RC	-50 -55	262.8	37.0	10.6m @ 2.28 % Cu	
	NAM	NAMRC054	557230 556762	8768020 8768388	1257	75 140	RC RC	-55 -50	127.8 42.8	34.0 44.0	14.0m @ 1.94 % Cu	
											8.7m @ 2.55 % Cu drilling campaigr orted based on a	

Criteria Commentary

0.5% Total Cu lower cut-off at a minimum drilled width of 3m with up to 3m internal dilution permitted. Hole locations are shown on the maps in the preceding section. NSA = No Significant Assays (<0.5% Cu or <3m drilled interval length).

		- J								
Prospect	Hole_ID	E	N	RL	ЕОН	Type	Dip	Azimuth	DH_From	Cu_Intercept_TT
DZ	NAMRC041	555965	8767880	1229	90	RC	-50	249.8	68.0	3.3m @ 0.70 % Cu
NAM	NAMRC054	557230	8768020	1257	75	RC	-55	127.8	55.0	3.0m @ 0.67 % Cu
NAM	NAMRC060	557185	8768006	1252	85	RC	-55	127.8	63.0	3.0m @ 0.59 % Cu
DZ	NAMRC034	555869	8767951	1228	140	RC	-50	69.8	131.0	2.9m @ 0.53 % Cu
NAM	NAMRC017	556961	8768220	1239	110	RC	-50	42.8	-	NSA
NAM	NAMRC024	557166	8767998	1249	75	RC	-65	122.8	-	NSA
DZ	NAMRC027	555909	8768067	1224	45	RC	-50	290.8	-	NSA
DZ	NAMRC031	555944	8768055	1224	70	RC	-50	290.8	-	NSA
DZ	NAMRC039	555928	8767968	1227	53	RC	-50	69.8	-	NSA
DZ	NAMRC044	555925	8767867	1232	35	RC	-50	249.8	-	NSA
DZ	NAMRC045	555950	8767925	1228	43	RC	-50	71.8	-	NSA
DZ	NAMRC048	555933	8767805	1233	30	RC	-50	251.8	-	NSA
NAM	NAMRC050	557227	8767928	1259	55	RC	-55	122.8	-	NSA
NAM	NAMRC056	557155	8767973	1247	80	RC	-55	122.8	-	NSA
NAM	NAMRC057	557193	8767920	1253	45	RC	-55	122.8	-	NSA
NAM	NAMRC058	557169	8767936	1250	50	RC	-55	122.8	-	NSA
NAM	NAMRC061	557294	8768013	1266	55	RC	-50	167.8	-	NSA
NAM	NAMRC062	557269	8768021	1263	62	RC	-55	127.8	-	NSA
NAM	NAMRC063	557244	8768040	1257	70	RC	-55	127.8	-	NSA
NAM	NAMRC064	557220	8768060	1252	80	RC	-55	127.8	-	NSA

• The table below shows the top 20 significant **cobalt** intercepts received from the Nambulwa 2019 drilling campaign, based on cobalt-grade-times-thickness measurement. All significant intercepts are reported based on a 0.2% Total Co lower cut-off at a minimum drilled width of 3m with up to 3m internal dilution permitted. Hole locations are shown on the maps in the preceding section. NSA = No Significant Assays (<0.2% Co or <3m drilled interval length).

Prospect	Hole_ID	E	N	RL	ЕОН	Туре	Dip	Azimuth	DH_From	Co_intercept_TT
DZ	NAMRC032	555882	8768040	1226	40	RC	-51	261.8	6.0	32.0m @ 0.70 % Co
DZ	NAMRC037	555893	8767955	1228	80	RC	-50	69.8	26.0	13.2m @ 0.37 % Co
NAM	NAMRC014	557037	8768234	1242	55	RC	-50	42.8	23.0	6.5m @ 0.73 % Co
DZ	NAMRC049	555933	8767787	1232	60	RC	-55	71.8	22.0	9.0m @ 0.37 % Co
NAM	NAMRC015	557014	8768210	1241	120	RC	-50	42.8	64.0	12.1m @ 0.32 % Co
DZ	NAMRC042	555948	8767871	1231	64	RC	-50	249.8	29.0	14.7m @ 0.25 % Co
NAM	NAMRC026	557207	8767972	1256	75	RC	-55	122.8	29.0	13.3m @ 0.28 % Co
DZ	NAMRC029	555904	8768043	1226	48	RC	-50	262.8	18.0	10.7m @ 0.33 % Co
NAM	NAMRC020	556847	8768319	1242	80	RC	-50	42.8	48.0	6.4m @ 0.39 % Co
DZ	NAMRC040	555899	8767906	1230	86	RC	-50	71.8	32.0	8.7m @ 0.39 % Co
DZ	NAMRC036	555919	8768020	1226	70	RC	-50	262.8	35.0	11.3m @ 0.22 % Co
NAM	NAMRC016	556980	8768251	1241	65	RC	-50	42.8	54.0	7.9m @ 0.30 % Co
DZ	NAMRC046	555959	8767845	1228	54	RC	-45	251.8	16.0	9.5m @ 0.26 % Co
DZ	NAMRC043	555924	8767915	1230	65	RC	-50	71.8	9.0	7.7m @ 0.37 % Co
DZ	NAMRC046	555959	8767845	1228	54	RC	-45	251.8	44.0	5.5m @ 0.42 % Co
NAM	NAMRC050	557227	8767928	1259	55	RC	-55	122.8	37.0	10.0m @ 0.29 % Co
DZ	NAMRC047	555962	8767821	1229	55	RC	-50	251.8	24.0	8.7m @ 0.22 % Co
DZ	NAMRC030	555929	8768059	1225	57	RC	-50	290.8	24.0	10.8m @ 0.23 % Co
DZ	NAMRC045	555950	8767925	1228	43	RC	-50	71.8	7.0	10.6m @ 0.25 % Co
NAM	NAMRC055	557180	8767955	1252	72	RC	-55	122.8	48.0	8.6m @ 0.29 % Co

• The table below shows the bottom 20 **cobalt** intercepts received from the Nambulwa 2019 drilling campaign, based on cobalt-grade-times-thickness measurement. All intercepts are reported based on a 0.2% Total Co lower cut-off at a minimum drilled width of 3m with up to 3m internal dilution permitted. Hole locations are shown on the maps in the preceding section. NSA = No Significant Assays (<0.2% Co or <3m drilled interval length).

Criteria	Commen	tary									
	Prospect	Hole_ID	E	N	RL	ЕОН	Туре	Dip	Azimuth	DH_From	Co_intercept_TT
	DZ	NAMRC031	555944	8768055	1224	70	RC	-50	290.8	39.0	2.5m @ 0.24 % Co
	NAM	NAMRC017	556961	8768220	1239	110	RC	-50	42.8	-	NSA
	NAM	NAMRC019	556928	8768263	1240	198	RC	-50	42.8	-	NSA
	NAM	NAMRC021	556762	8768388	1236	140	RC	-50	42.8	-	NSA
	NAM	NAMRC022	556879	8768359	1263	85	RC	-52	220.8	-	NSA
	NAM	NAMRC024	557166	8767998	1249	75	RC	-65	122.8	-	NSA
	DZ	NAMRC027	555909	8768067	1224	45	RC	-50	290.8	-	NSA
	DZ	NAMRC033	555966	8768025	1224	110	RC	-50	262.8	-	NSA
	DZ	NAMRC035	555938	8768022	1225	90	RC	-50	262.8	-	NSA
	DZ	NAMRC038	555891	8768018	1227	60	RC	-50	262.8	-	NSA
	DZ	NAMRC048	555933	8767805	1233	30	RC	-50	251.8	-	NSA
	NAM	NAMRC052	557228	8767985	1260	70	RC	-55	127.8	-	NSA
	NAM	NAMRC056	557155	8767973	1247	80	RC	-55	122.8	-	NSA
	NAM	NAMRC057	557193	8767920	1253	45	RC	-55	122.8	-	NSA
	NAM	NAMRC058	557169	8767936	1250	50	RC	-55	122.8	-	NSA
	NAM	NAMRC059	557207	8768003	1253	80	RC	-55	127.8	-	NSA
	NAM NAM	NAMRC062 NAMRC063	557269	8768021 8768040	1263 1257	62 70	RC RC	-55 -55	127.8 127.8	-	NSA NSA
	NAM	NAMRC064	557244 557220	8768040	1257	80	RC	-55	127.8	-	NSA
	NAM	NAMRC065	557187	8768013	1252	85	RC	-55	127.8		NSA
xploration data	 2013. 3D inversion of the EM data identified a prominent conductor body over the western, central eastern section of the Project. Geological mapping was conducted in 2014 and 2017. Mapping results outlined the presence of th geologically prospective rock units that are the main host rock to the mineralisation. Younger lithol were also noted from the Nguba and Kundelungu Formations. Surface geochemistry: Termite mound sampling on 100m x 100m grid was completed in 2014, whice effectively identified copper anomalous zones within the tenement. Additional geochemical surveys include 50m x 50m soil sampling conducted in 2017. Airborne Geophysics - Xcalibur survey, flown in 2015 Magnetics – effective at mapping structural and stratigraphic domains 										resence of the ounger lithologies in 2014, which
		diometrics - e und IP and AN		11 3	-	,			9		t denth
urther work	510					9				u	
	• Furt	her activities a		:u 101 tile 2	020 ex	oloratio	n seas	OH.			
	• Furt	her activities a		rological di					ing for en	gineering s	tudies and pit

Table 3: Complete tabulation of all **copper** results from the 2019 drilling campaign at the Nambulwa Project. All significant intercepts are reported based on a 0.5% Total Cu lower cut-off at a minimum width of 3m with up to 3m internal dilution permitted. Copper equivalents were not used in the reporting of exploration results. NSA = No Significant Assays (<0.5% Cu or <3m drilled interval length).

cporting or t	of this of exploration results. Not the significant results (10.5% ea of 15th armed interval length).											
Prospect	Hole_ID	E	N	RL	EOH	Type	Dip	Azimuth	DH_From	Cu_Intercept_TT		
NAM	NAMRC014	557037	8768234	1242	55	RC	-50	42.8	22.0	5.7m @ 1.73 % Cu		
NAM	NAMRC015	557014	8768210	1241	120	RC	-50	42.8	53.0	26.7m @ 3.93 % Cu		
NAM	NAMRC015	557014	8768210	1241	120	RC	-50	42.8	93.0	2.4m @ 1.33 % Cu		
NAM	NAMRC016	556980	8768251	1241	65	RC	-50	42.8	28.0	2.9m @ 3.25 % Cu		
NAM	NAMRC016	556980	8768251	1241	65	RC	-50	42.8	37.0	5.8m @ 1.12 % Cu		
NAM	NAMRC017	556961	8768220	1239	110	RC	-50	42.8	-	NSA		
NAM	NAMRC018	556949	8768284	1245	100	RC	-50	42.8	15.0	2.5m @ 1.17 % Cu		
NAM	NAMRC019	556928	8768263	1240	198	RC	-50	42.8	32.0	20.1m @ 3.14 % Cu		
NAM	NAMRC019	556928	8768263	1240	198	RC	-50	42.8	86.0	8.4m @ 1.73 % Cu		
NAM	NAMRC019	556928	8768263	1240	198	RC	-50	42.8	106.0	77.2m @ 0.74 % Cu		
NAM	NAMRC020	556847	8768319	1242	80	RC	-50	42.8	25.0	25.5m @ 2.59 % Cu		
NAM	NAMRC021	556762	8768388	1236	140	RC	-50	42.8	44.0	8.7m @ 2.55 % Cu		
NAM	NAMRC021	556762	8768388	1236	140	RC	-50	42.8	60.0	15.7m @ 1.69 % Cu		

Prospect	Hole ID	E	N	RL	EOH	Туре	Dip	Azimuth	DH From	Cu Intercept TT
NAM	NAMRC021	556762	8768388	1236	140	RC	-50	42.8	121.0	6.1m @ 1.19 % Cu
NAM	NAMRC022	556879	8768359	1263	85	RC	-52	220.8	18.0	30.0m @ 1.92 % Cu
NAM	NAMRC022	556879	8768359	1263	85	RC	-52	220.8	67.0	4.1m @ 0.55 % Cu
NAM	NAMRC023	556784	8768406	1243	65	RC	-50	42.8	22.0	5.2m @ 1.71 % Cu
NAM	NAMRC023	556784	8768406	1243	65	RC	-50	42.8	45.0	4.0m @ 0.88 % Cu
NAM	NAMRC024	557166	8767998	1249	75	RC	-65	122.8	-	NSA
NAM	NAMRC025	557204	8767943	1256	65	RC	-55	122.8	24.0	19.1m @ 2.23 % Cu
NAM	NAMRC025	557204	8767943	1256	65	RC	-55	122.8	57.0	4.8m @ 1.31 % Cu
NAM	NAMRC026	557207	8767972	1256	75	RC	-55	122.8	20.0	20.0m @ 1.57 % Cu
DZ	NAMRC027	555909	8768067	1224	45	RC	-50	290.8	-	NSA
DZ	NAMRC028	555924	8768044	1225	65	RC	-50	262.8	37.0	10.6m @ 2.28 % Cu
DZ	NAMRC029	555904	8768043	1226	48	RC	-50	262.8	18.0	29.2m @ 2.78 % Cu
DZ	NAMRC030	555929	8768059	1225	57	RC	-50	290.8	32.0	9.9m @ 0.99 % Cu
DZ	NAMRC031	555944	8768055	1224	70	RC	-50	290.8	-	NSA
DZ	NAMRC032	555882	8768040	1226	40	RC	-51	261.8	9.0	26.2m @ 3.37 % Cu
DZ	NAMRC033	555966	8768025	1224	110	RC	-50	262.8	66.0	8.3m @ 0.53 % Cu
DZ	NAMRC034	555869	8767951	1228	140	RC	-50	69.8	47.0	21.2m @ 1.02 % Cu
DZ	NAMRC034	555869	8767951	1228	140	RC	-50	69.8	100.0	2.2m @ 1.92 % Cu
DZ	NAMRC034	555869	8767951	1228	140	RC	-50	69.8	110.0	13.2m @ 0.51 % Cu
DZ	NAMRC034	555869	8767951	1228	140	RC	-50	69.8	131.0	2.9m @ 0.53 % Cu
DZ	NAMRC035	555938	8768022	1225	90	RC	-50	262.8	41.0	7.3m @ 1.57 % Cu
DZ	NAMRC035	555938	8768022	1225	90	RC	-50	262.8	76.0	10.2m @ 0.60 % Cu
DZ	NAMRC036	555919	8768020	1226	70	RC	-50	262.8	24.0	4.5m @ 0.85 % Cu
DZ	NAMRC036	555919	8768020	1226	70	RC	-50	262.8	35.0	11.3m @ 1.01 % Cu
DZ	NAMRC037	555893	8767955	1228	80	RC	-50	69.8	22.0	27.8m @ 0.77 % Cu
DZ	NAMRC037	555891	8768018	1227	60	RC	-50	262.8	49.0	3.6m @ 1.59 % Cu
DZ	NAMRC039	555928	8767968	1227	53	RC	-50	69.8	-	NSA
DZ	NAMRC040	555899	8767906	1230	86	RC	-50	71.8	32.0	5.8m @ 1.43 % Cu
DZ	NAMRC040	555899	8767906	1230	86	RC	-50	71.8	61.0	5.8m @ 2.42 % Cu
DZ	NAMRC040	555965	8767880	1229	90	RC	-50	249.8	44.0	7.4m @ 1.28 % Cu
DZ	NAMRC041	555965	8767880	1229	90	RC	-50	249.8	57.0	3.3m @ 1.24 % Cu
DZ	NAMRC041	555965	8767880	1229	90	RC	-50	249.8	68.0	3.3m @ 0.70 % Cu
DZ	NAMRC041	555965	8767880	1229	90	RC	-50	249.8	76.0	6.6m @ 0.97 % Cu
DZ	NAMRC041	555948	8767871	1231	64	RC	-50	249.8	23.0	6.6m @ 0.62 % Cu
DZ	NAMRC042	555948	8767871	1231	64	RC	-50	249.8	59.0	4.1m @ 1.25 % Cu
DZ	NAMRC042	555924	8767915	1230	65	RC	-50	71.8	21.0	5.8m @ 0.77 % Cu
DZ	NAMRC043	555924	8767915	1230	65	RC	-50	71.8	46.0	18.4m @ 1.60 % Cu
DZ	NAMRC043	555925	8767867	1232	35	RC	-50	249.8	-	NSA
DZ	NAMRC044	555950	8767925	1232	43	RC	-50	71.8	_	NSA
DZ	NAMRC045	555959	8767845	1228	54	RC	-45	251.8	44.0	7.9m @ 3.53 % Cu
DZ	NAMRC046		8767821		55		-50	251.8		
DZ	NAMRC047	555962 555933	8767805	1229 1233	30	RC RC	-50	251.8	47.0	4.7m @ 2.50 % Cu NSA
DZ	NAMRC048	555933	8767787	1233	60	RC	-55	71.8	41.0	6.3m @ 1.13 % Cu
NAM	NAMRC049	557227	8767928	1252	55	RC	-55	122.8	41.0	NSA
NAM	NAMRC051	557254	8767969	1266	55	RC	-55	127.8	18.0	26.8m @ 2.20 % Cu
NAM	NAMRC051	557228	8767985	1260	70	RC	-55	127.8	19.0	21.8m @ 1.06 % Cu
NAM	NAMRC052	557271	8767990	1267	50	RC	-55	127.8	26.0	6.0m @ 1.36 % Cu
NAM	NAMRC053	557230	8768020	1257	75	RC	-55	127.8	34.0	14.0m @ 1.94 % Cu
NAM	NAMRC054	557230	8768020	1257	75	RC	-55	127.8	55.0	3.0m @ 0.67 % Cu
NAM	NAMRC054	557180	8767955	1257	72	RC	-55	127.8	48.0	20.1m @ 0.93 % Cu
NAM	NAMRC056	557155	8767973	1232	80	RC	-55	122.8	40.0	NSA
NAM	NAMRC057	557193	8767920	1253	45	RC	-55	122.8	-	NSA
NAM	NAMRC058	557169	8767936	1250	50	RC	-55	122.8	-	NSA
NAM	NAMRC059	557207	8768003	1253	80	RC	-55	127.8	24.0	23.8m @ 1.21 % Cu
NAM	NAMRC060	557185	8768003	1252	85	RC	-55	127.8	36.0	20.9m @ 1.58 % Cu
NAM	NAMRC060	557185	8768006	1252	85	RC	-55	127.8	63.0	3.0m @ 0.59 % Cu
NAM	NAMRC060	557294	8768013	1266	55	RC	-50	167.8	03.0	3.0m @ 0.59 % Cu NSA
NAM	NAMRC061	557269		1266	62	RC	-55	127.8	-	NSA NSA
NAM	NAMRC062	557244	8768021 8768040	1263	70	RC	-55	127.8	-	NSA NSA
INVIAI	14/21411/C002	JJ1 244	0700040	1631	70	INC.	-55	121.0	_ =	INDIA

Prospect	Hole_ID	E	N	RL	EOH	Type	Dip	Azimuth	DH_From	Cu_Intercept_TT
NAM	NAMRC064	557220	8768060	1252	80	RC	-55	127.8	-	NSA
NAM	NAMRC065	557187	8768013	1252	85	RC	-55	127.8	51.0	9.9m @ 0.95 % Cu

Table 4: Complete tabulation of all **cobalt** results from the 2019 drilling campaign at the Nambulwa Project. All significant intercepts are reported based on a 0.2% Total Co lower cut-off at a minimum width of 3m with up to 3m internal dilution permitted. NSA = No Significant Assays (<0.2% Co or <3m drilled interval length).

	d interval lengti	,							511.5	o :
Prospect	Hole_ID	E	N	RL	EOH	Type	Dip	Azimuth	DH_From	Co_intercept_TT
NAM	NAMRC014	557037	8768234	1242	55	RC	-50	42.8	23.0	6.5m @ 0.73 % Co
NAM	NAMRC014	557037	8768234	1242	55	RC	-50	42.8	36.0	7.3m @ 0.27 % Co
NAM	NAMRC015	557014	8768210	1241	120	RC	-50	42.8	64.0	12.1m @ 0.32 % Co
NAM	NAMRC016	556980	8768251	1241	65	RC	-50	42.8	40.0	5.8m @ 0.30 % Co
NAM	NAMRC016	556980	8768251	1241	65	RC	-50	42.8	54.0	7.9m @ 0.30 % Co
NAM	NAMRC017	556961	8768220	1239	110	RC	-50	42.8	-	NSA
NAM	NAMRC018	556949	8768284	1245	100	RC	-50	42.8	26.0	5.0m @ 0.31 % Co
NAM	NAMRC018	556949	8768284	1245	100	RC	-50	42.8	38.0	2.5m @ 0.29 % Co
NAM	NAMRC019	556928	8768263	1240	198	RC	-50	42.8	-	NSA
NAM	NAMRC020	556847	8768319	1242	80	RC	-50	42.8	48.0	6.4m @ 0.39 % Co
NAM	NAMRC021	556762	8768388	1236	140	RC	-50	42.8	-	NSA
NAM	NAMRC022	556879	8768359	1263	85	RC	-52	220.8	-	NSA
NAM	NAMRC023	556784	8768406	1243	65	RC	-50	42.8	30.0	5.2m @ 0.21 % Co
NAM	NAMRC024	557166	8767998	1249	75	RC	-65	122.8	-	NSA
NAM	NAMRC025	557204	8767943	1256	65	RC	-55	122.8	38.0	5.7m @ 0.33 % Co
NAM	NAMRC026	557207	8767972	1256	75	RC	-55	122.8	29.0	13.3m @ 0.28 % Co
DZ	NAMRC027	555909	8768067	1224	45	RC	-50	290.8	-	NSA
DZ	NAMRC028	555924	8768044	1225	65	RC	-50	262.8	14.0	4.4m @ 0.34 % Co
DZ	NAMRC029	555904	8768043	1226	48	RC	-50	262.8	18.0	10.7m @ 0.33 % Co
DZ	NAMRC030	555929	8768059	1225	57	RC	-50	290.8	24.0	10.8m @ 0.23 % Co
DZ	NAMRC031	555944	8768055	1224	70	RC	-50	290.8	39.0	2.5m @ 0.24 % Co
DZ	NAMRC032	555882	8768040	1226	40	RC	-51	261.8	6.0	32.0m @ 0.70 % Co
DZ	NAMRC033	555966	8768025	1224	110	RC	-50	262.8	-	NSA
DZ	NAMRC034	555869	8767951	1228	140	RC	-50	69.8	61.0	3.7m @ 0.34 % Co
DZ	NAMRC034	555869	8767951	1228	140	RC	-50	69.8	70.0	3.7m @ 0.34 % Co
DZ	NAMRC035	555938	8768022	1225	90	RC	-50	262.8	-	NSA
DZ	NAMRC036	555919	8768020	1226	70	RC	-50	262.8	20.0	7.5m @ 0.25 % Co
DZ	NAMRC036	555919	8768020	1226	70	RC	-50	262.8	35.0	11.3m @ 0.22 % Co
DZ	NAMRC037	555893	8767955	1228	80	RC	-50	69.8	26.0	13.2m @ 0.37 % Co
DZ	NAMRC038	555891	8768018	1227	60	RC	-50	262.8	-	NSA
DZ	NAMRC039	555928	8767968	1227	53	RC	-50	69.8	7.0	4.5m @ 0.27 % Co
DZ	NAMRC040	555899	8767906	1230	86	RC	-50	71.8	32.0	8.7m @ 0.39 % Co
DZ	NAMRC041	555965	8767880	1229	90	RC	-50	249.8	44.0	4.1m @ 0.51 % Co
DZ	NAMRC041	555965	8767880	1229	90	RC	-50	249.8	58.0	5.7m @ 0.25 % Co
DZ	NAMRC042	555948	8767871	1231	64	RC	-50	249.8	19.0	3.3m @ 0.33 % Co
DZ	NAMRC042	555948	8767871	1231	64	RC	-50	249.8	29.0	14.7m @ 0.25 % Co
DZ	NAMRC043	555924	8767915	1230	65	RC	-50	71.8	9.0	7.7m @ 0.37 % Co
DZ	NAMRC044	555925	8767867	1232	35	RC	-50	249.8	3.0	2.0m @ 0.34 % Co
DZ	NAMRC045	555950	8767925	1228	43	RC	-50	71.8	7.0	10.6m @ 0.25 % Co
DZ	NAMRC046	555959	8767845	1228	54	RC	-45	251.8	16.0	9.5m @ 0.26 % Co
DZ	NAMRC046	555959	8767845	1228	54	RC	-45	251.8	44.0	5.5m @ 0.42 % Co
DZ	NAMRC047	555962	8767821	1229	55	RC	-50	251.8	24.0	8.7m @ 0.22 % Co
DZ	NAMRC048	555933	8767805	1233	30	RC	-50	251.8	-	NSA
DZ	NAMRC049	555933	8767787	1232	60	RC	-55	71.8	22.0	9.0m @ 0.37 % Co
NAM	NAMRC050	557227	8767928	1259	55	RC	-55	122.8	37.0	10.0m @ 0.29 % Co
NAM	NAMRC051	557254	8767969	1266	55	RC	-55	127.8	32.0	4.0m @ 0.27 % Co
NAM	NAMRC052	557228	8767985	1260	70	RC	-55	127.8	-	NSA
NAM	NAMRC053	557271	8767990	1267	50	RC	-55	127.8	31.0	5.0m @ 0.30 % Co
NAM	NAMRC053	557271	8767990	1267	50	RC	-55	127.8	42.0	4.0m @ 0.30 % Co
NAM	NAMRC054	557230	8768020	1257	75	RC	-55	127.8	42.0	4.0m @ 0.34 % Co
13/7/171	INCOD4	JJ1630	0700020	1631	1)	11.0	رر	127.0	72.0	7.011 @ 0.34 70 CU

Prospect	Hole_ID	E	N	RL	EOH	Туре	Dip	Azimuth	DH_From	Co_intercept_TT
NAM	NAMRC055	557180	8767955	1252	72	RC	-55	122.8	48.0	8.6m @ 0.29 % Co
NAM	NAMRC056	557155	8767973	1247	80	RC	-55	122.8	-	NSA
NAM	NAMRC057	557193	8767920	1253	45	RC	-55	122.8	-	NSA
NAM	NAMRC058	557169	8767936	1250	50	RC	-55	122.8	-	NSA
NAM	NAMRC059	557207	8768003	1253	80	RC	-55	127.8	-	NSA
NAM	NAMRC060	557185	8768006	1252	85	RC	-55	127.8	45.0	4.0m @ 0.26 % Co
NAM	NAMRC060	557185	8768006	1252	85	RC	-55	127.8	54.0	3.0m @ 0.28 % Co
NAM	NAMRC061	557294	8768013	1266	55	RC	-50	167.8	34.0	6.0m @ 0.28 % Co
NAM	NAMRC062	557269	8768021	1263	62	RC	-55	127.8	-	NSA
NAM	NAMRC063	557244	8768040	1257	70	RC	-55	127.8	-	NSA
NAM	NAMRC064	557220	8768060	1252	80	RC	-55	127.8	-	NSA
NAM	NAMRC065	557187	8768013	1252	85	RC	-55	127.8	-	NSA

Statement of Compliance with JORC Code Reporting Criteria and Consent to Release

This report has been compiled in accordance with the guidelines defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("2012 JORC Code").

Competent Person Statement

I, Marcus Tomkinson, confirm that I am the Competent Person for the Exploration Results section of this Report and:

- I have read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition).
- I am a Competent Person as defined by the JORC Code, 2012 Edition, having five years' experience that is relevant to the style of mineralisation and type of deposit described in the Report, and to the activity for which I am accepting responsibility.
- I am a Member of The Australasian Institute of Mining and Metallurgy
- I have reviewed the relevant Exploration results sections of this Report to which this Consent Statement applies.

I am a full time employee of MMG Ltd. at the time of the estimation.

I have disclosed to the reporting company the full nature of the relationship between myself and the company, including any issue that could be perceived by investors as a conflict of interest.

I verify that the Exploration Results sections of this Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in my supporting documentation relating to the Exploration Results.

Competent Person Consent

Pursuant to the requirements Clause 9 of the JORC Code 2012 Edition (Written Consent Statement)

With respect to the sections of this report for which I am responsible –I consent to the release of the Exploration results as presented in this report:

Name and Member Number

Marcus Tomkinson

City of Residence

23 April 2020

AUSIMM Member 206648

Melbourne

Signature of Witness:

Witness Name and Residence: (e.g. town/suburb)

Blake Ericksen, Melbourne